Supplementary information for

Synthesis and Characterisation of Dewar Benzene-Ferrocene Conjugates

Štěpánka Janková, a Ivana Císařová, b Filip Uhlík, c Petr Štěpnička b and Martin Kotora a,d,*

a Department of Organic and Nuclear Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2 (Czech Republic).
b Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2 (Czech Republic).
c Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2 (Czech Republic).
d Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic).

Contents

I. General Comments 2
II. Synthesis of starting compounds, Dewar benzenes, and benzenes 2
III. X-ray crystallography 5
IV. Electrochemistry 10
V. Computational details 11
VI. Comparison of bond lengths in structurally characterized Dewar benzenes 21
VII. References 23
I. General comments

AlCl₃, 2-butyne, and 3-hexyne were purchased from Sigma-Aldrich. Dichloromethane was distilled from calcium hydride under argon atmosphere prior to the use. ¹H NMR (400 or 300 MHz) and ¹³C NMR (100 or 75 MHz) spectra were recorded on a Varian Unity Inova 400 or Varian 300 spectrometers. Infrared spectra were recorded with a PE-640 Perkin-Elmer spectrometer. Mass spectra were obtained on a ZAB-EQ VG Analytical spectrometer. Elemental analyses were obtained on a Perkin-Elmer 2400 elemental analyser. TLC was performed on Merck Silica Gel 60 F₂₅₄ aluminium sheets. Preparative TLC chromatography was carried out on Merck Silica Gel 60 F₂₅₄ while conventional column chromatography was performed on Fluka Silica Gel 60.

II. Syntheses

Ethyl 3-ferrocenylpropynoate (1) and (propyn-1-yl)ferrocene (5). Ester 1 and alkyne 5 were prepared as previously described by lithiation of ferrocenylethyne with n-BuLi followed by reaction with ethyl chloroformate and methyl iodide, respectively.¹

General procedure for the preparation of Dewar benzenes. A solution of alkyne (1.2 mmol) in CH₂Cl₂ (3 mL) was added to a stirred suspension of powdered anhydrous AlCl₃ (84 mg, 0.55 mmol) in dry dichloromethane (3 mL) at -15 °C. Then, the ferrocene derivative 1 or 5 (0.5 mmol) was added to the reaction mixture at -15 °C. After stirring for 2 h at the same temperature DMSO (230 μL) was added, the mixture was poured onto crushed ice, extracted with diethyl ether (3 × 5 mL), and the combined organic layers were dried over MgSO₄. The volatiles were removed under reduced pressure and the residue was purified by column chromatography.

Ethyl 2-ferrocenyl-1,4,5,6-tetramethylbicyclo[2.2.0]hexa-2,5-diene-2-carboxylate (3a). Ethyl 3-ferrocenylpropynoate (1; 165mg, 0.59 mmol) and 2-butyne were used in this reaction. Column chromatography on silica gel (9/1 hexane/EtOAc) afforded 120 mg (31%) of the title compound as a red solid: mp 107 °C (methanol); ¹H NMR (400 MHz, C₆D₆) δ 1.05 (t, J = 7.2 Hz, 3H), 1.29
(s, 3H), 1.44 (s, 3H), 1.63 (bs, 3H), 1.70 (bs, 3H), 4.04 (s, 5H), 4.10-4.14 (m, 2H), 4.18-4.22 (m, 2H), 5.05-5.5.12 (m, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 11.60, 11.76, 12.06, 12.51, 15.23, 55.70, 56.19, 59.95, 70.33, 70.77, 71.30, 71.53, 72.31, 77.44, 133.62, 142.47, 145.83, 164.72, 167.60; IR (KBr) ν 3118, 3109, 3097, 2981, 2969, 2946, 2914, 2856, 1687, 1614, 1481, 1452, 1440, 1362, 1298, 1271, 1240, 1213, 1181, 1097, 1033, 1001, 960, 821, 794 cm$^{-1}$; EI-MS m/z (%) 390 (M$^+$, 56), 281 (100), 249 (7), 195 (16), 179 (10), 165 (20), 121 (10), 56 (7); HRMS calc. for C$_{23}$H$_{26}$FeO$_2$ 390.12822, found 390.12771. R_f (9/1 hexane/EtOAc) = 0.62.

Ethyl 2-ferrocenyl-1,4,5,6-tetraethylbicyclo[2.2.0]hexa-2,5-diene-2-carboxylate (3b). Ethyl 3-ferrocenylpropynoate (1, 165 mg, 0.59 mmol) and 3-hexyne were used in this reaction. Column chromatography on silica gel (7/1 hexane/EtOAc) afforded 70 mg (17%) of the title compound as a red oil: 1H NMR (400 MHz, C$_6$D$_6$) δ 0.99 (t, J = 7.6 Hz, 3H), 1.06-1.15 (m, 12H), 2.01-2.32 (m, 8H), 4.09 (s, 5H), 4.10-4.23 (m, 4H), 4.95 (bs, 1H), 5.30 (bs, 1H); 13C NMR (100 MHz, C$_6$D$_6$) δ 11.65, 12.02, 13.33, 13.91, 15.20, 21.65, 22.10, 22.17, 22.83, 59.91, 61.40, 62.47, 70.62, 70.93, 70.98, 71.45, 72.57, 77.69, 132.60, 146.56, 150.25, 164.63, 167.67; IR (ATR, Ge) ν 3100, 2965, 2932, 2875, 2851, 1694, 1616, 1455, 1377, 1296, 1231, 1189, 1153, 1105, 1075, 1024, 1003 cm$^{-1}$; EI-MS m/z (%) 446 (M$^+$ 98), 400 (5), 351 (7), 337 (100), 233 (7), 205 (18), 193 (8), 179 (10), 149 (9), 121 (9), 91 (6), 57 (17), 41 (9); HRMS calc. for C$_{27}$H$_{31}$FeO$_2$ 446.19082, found 446.19016. R_f (9/1 hexane/EtOAc) = 0.65.

Pentamethylphenylferrocene (6). 1-Propynylferrocene (112 mg, 0.5 mmol) and 3-butyne were used in this reaction. Chromatography on a preparative TLC plate (90/10 hexane/EtOAc) afforded 25 mg (15%) of the title compound as an orange solid: mp 131-133 °C (methanol); 1H NMR (400 MHz, C$_6$D$_6$) δ 2.14 (bs, 9H), 2.50 (s, 6H), 4.03 (s, 5H), 4.13-4.14 (m, 2H), 4.17-4.17 (m, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 17.75, 17.87, 20.99, 67.90, 70.72, 73.62, 90.32, 133.53, 133.88, 133.96, 134.21; IR (KBr) ν 3103, 3092, 2984, 2923, 2854, 1449, 1412, 1383, 1171, 1104, 1052, 1029, 1000 cm$^{-1}$; EI-MS m/z (%) 332 (M$^+$ 100), 317 (47), 302 (8), 264 (11), 211 (25), 196 (30), 181 (46), 165 (49), 152 (17), 141 (12), 128 (12), 121 (90), 115 (12), 91 (10), 77 (8), 56 (40), 41 (17); HRMS calc. for C$_{21}$H$_{24}$Fe 332.12274, found 332.12366. R_f (9/1 hexane/EtOAc) = 0.82.
General procedure for the conversion of Dewar benzenes to arylferrocenes. Dewar benzene 3 (0.05 mmol) was dissolved in THF (3 mL) together with 1-butyl-2,3-dimethyl-imidazolinium tetrafluoroborate (100 μL) and the reaction mixture was irradiated in a microwave reactor for 6 hours (Biotage initiator, 300 W; temperature reached 170 °C, pressure 16 bar). Column chromatography on silica gel afforded the arylferrocene derivatives.

Ethyl 2-ferrocenyl-3,4,5,6-tetramethylbenzoate (4a). Starting with 3a (25 mg, 0.064 mmol), the general procedure gave, after column chromatography on silica gel (9/1 hexane/EtOAc), 20 mg (80%) of the title compound as a yellow solid: mp 156-158 °C (methanol); \(^1\)H NMR (400 MHz, \(\text{C}_6\text{D}_6\)) \(\delta\) 0.93 (t, \(J = 7.6\) Hz, 3H), 1.95 (s, 3H), 2.07 (s, 3H), 2.26 (s, 3H), 2.70 (s, 3H), 3.96 (s, 5H), 4.02-4.08 (m, 4H), 4.43 (bs, 2H); IR (KBr) \(\nu\) 3092, 2972, 2917, 2891, 2848, 1718, 1471, 1439, 1384, 1305, 1279, 1183, 1102, 1044, 1027, 829, 809 cm\(^{-1}\). \(R_f\) (9/1 hexane/EtOAc) = 0.45. Spectral characteristics were in agreement with the previously published data.\(^2\)

Ethyl 2-ferrocenyl-3,4,5,6-tetraethylbenzoate (4b). Starting with 3b (25 mg, 0.056 mmol), the general procedure and column chromatography on silica gel (9/1 hexane/EtOAc) afforded 19 mg (76%) of the title compound as a yellow solid mp. 175-177 °C (methanol); \(^1\)H NMR (400 MHz, \(\text{C}_6\text{D}_6\)) \(\delta\) 0.90 (t, \(J = 7.6\) Hz, 3H), 1.07 (t, \(J = 7.6\) Hz, 3H), 1.14 (t, \(J = 7.6\) Hz, 3H), 1.20 (t, \(J = 7.6\) Hz, 3H), 1.37 (t, \(J = 7.6\) Hz, 3H), 2.61 (q, \(J = 7.6\) Hz, 2H), 2.71-2.77 (m, 4H), 3.10-3.60 (bm, 2H); 3.88 (s, 5H), 4.01 (\(J = 7.2\) Hz, 2H), 4.04-4.07 (m, 2H), 4.53 (bs, 2 H); \(^{13}\)C NMR (100 MHz, \(\text{C}_6\text{D}_6\)) \(\delta\) 14.79, 16.55, 17.20, 17.25, 18.26, 22.89, 23.55, 25.20, 61.16, 68.57, 70.65, 71.50, 89.37, 132.65, 137.16, 137.61, 140.11, 140.63, 142.82, 172.33; IR (KBr) \(\nu\) 3091, 2967, 2923, 2869, 1723, 1451, 1371, 1295, 1188, 1175, 1027, 1001, 820 cm\(^{-1}\); EI-MS m/z (%) 446 (M\(^+\) 100), 351 (9), 337 (31), 297 (8), 279 (9), 221 (5), 207 (8), 193 (12), 179 (16), 165 (19), 152 (10), 121 (47), 97 (7), 83 (9), 69 (20), 55 (34); HRMS calc. for C\(_{27}\)H\(_{34}\)FeO\(_2\) 446.19082, found 446.18962. \(R_f\) (9/1 hexane/EtOAc) = 0.47.
III. X-ray crystallography

Single crystals suitable for X-ray diffraction analysis were grown by recrystallisation from methanol (3a: red prism, 0.08 × 0.18 × 0.37 mm3; 6: orange plate, 0.10 × 0.45 × 0.80 mm3) and from heptane (4a: orange plate, 0.05 × 0.10 × 0.55 mm3).

Full-set diffraction data ($\pm h \pm k \pm l$, $2\theta \leq 55.0$-55.2°) were collected with a Nonius KappaCCD diffractometer equipped with a Cryostream Cooler (Oxford Cryosystems) using graphite monochromatised MoKα radiation ($\lambda = 0.71073$ Å). The data were analyzed with the HKL program package.3 No absorption correction was applied. The crystal of 4a was a non-merohedral twin. Correction for the contribution of the second part was applied and included into the refinement (volume ratio 0.472:0.528).

The phase problems were solved by direct methods (SIR97)4 and the structure were refined by full-matrix least-squares procedure based on F^2 (SHELXL97).5 The non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in their calculated positions and refined as riding atoms with U_{iso}(H) assigned to a multiple of U_{eq}(C) of their bonding carbon atom. Relevant crystallographic data and structure refinement parameters are given in Table S4. Geometric parameters and structural drawings were obtained with a recent version of the PLATON program.6

CCDC 718552-718554 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via the Internet at www.ccdc.cam.ac.uk/data_request/cif.
Figure S1. View of the molecular structure of 3a. Displacement ellipsoids enclose the 30% probability level. The dihedral angle of the C(1-5) Cp(1) and C(11,12,13,16) planes is 6.7(1)°.

Table S1. Selected distances and angles for 3a (in Å and deg).a

<table>
<thead>
<tr>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Cg1</td>
<td>1.6440(9) [1.654]</td>
</tr>
<tr>
<td>Fe-Cg2</td>
<td>1.652(1) [1.655]</td>
</tr>
<tr>
<td>C1-C11</td>
<td>1.454(2) [1.447]</td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.351(2) [1.364]</td>
</tr>
<tr>
<td>C12-C13</td>
<td>1.532(3) [1.531]</td>
</tr>
<tr>
<td>C13-C14</td>
<td>1.523(3) [1.536]</td>
</tr>
<tr>
<td>C13-C16</td>
<td>1.574(3) [1.581]</td>
</tr>
<tr>
<td>C14-C15</td>
<td>1.342(3) [1.346]</td>
</tr>
<tr>
<td>C15-C16</td>
<td>1.528(3) [1.539]</td>
</tr>
<tr>
<td>C16-C11</td>
<td>1.540(2) [1.543]</td>
</tr>
<tr>
<td>C-CH3</td>
<td>1.484(3)-1.528(3) [1.492-1.520]</td>
</tr>
<tr>
<td>C12-C17</td>
<td>1.461(2) [1.460]</td>
</tr>
<tr>
<td>C17-O1</td>
<td>1.212(2) [1.223]</td>
</tr>
<tr>
<td>C17-O2</td>
<td>1.346(2) [1.362]</td>
</tr>
<tr>
<td>O2-C18</td>
<td>1.457(2) [1.442]</td>
</tr>
<tr>
<td>C18-C19</td>
<td>1.501(3) [1.518]</td>
</tr>
</tbody>
</table>

a Values in square brackets have been calculated by DFT calculations. b Definition of the ring planes: Cp1 = C(1-5), Cp2 = C(6-10). Cg1 and Cg2 stand for the respective ring centroids. c The range of C13-C20, C14-C21, C15-C22, and C16-C23 bond lengths. d The range of C12/C14-C13-C20, C13/C15-C14-C21, C14/C16-C15-C22 and C11/C15-C16-C23 angles.
Figure S2. View of the molecular structure of 4a. Displacement ellipsoids enclose the 30% probability level. The dihedral angle of the C(1-5) (Cp1) and C(11-16) planes is 42.4(1)°.

Table S2. Selected distances and angles for 4a (in Å and deg).a

<table>
<thead>
<tr>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Cg1b</td>
<td>1.652(1) [1.664]</td>
</tr>
<tr>
<td>Fe-Cg2b</td>
<td>1.647(1) [1.663]</td>
</tr>
<tr>
<td>C1-C11</td>
<td>1.497(3) [1.492]</td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.412(4) [1.417]</td>
</tr>
<tr>
<td>C12-C13</td>
<td>1.397(4) [1.405]</td>
</tr>
<tr>
<td>C13-C14</td>
<td>1.405(4) [1.409]</td>
</tr>
<tr>
<td>C14-C15</td>
<td>1.395(4) [1.406]</td>
</tr>
<tr>
<td>C15-C16</td>
<td>1.410(4) [1.411]</td>
</tr>
<tr>
<td>C16-C11</td>
<td>1.408(3) [1.411]</td>
</tr>
<tr>
<td>C-CH3c</td>
<td>1.509(4)-1.516(4)</td>
</tr>
<tr>
<td></td>
<td>[1.512-1.517]</td>
</tr>
<tr>
<td>C12-C17</td>
<td>1.493(4) [1.505]</td>
</tr>
<tr>
<td>C17-O1</td>
<td>1.209(3) [1.216]</td>
</tr>
<tr>
<td>C17-O2</td>
<td>1.343(3) [1.349]</td>
</tr>
<tr>
<td>O2-C18</td>
<td>1.453(3) [1.446]</td>
</tr>
<tr>
<td>C18-C19</td>
<td>1.502(5) [1.517]</td>
</tr>
</tbody>
</table>

a Values in square brackets have been calculated by DFT calculations. b Definition of the ring planes: Cp1 = C(1-5), Cp2 = C(6-10). Cg1 and Cg2 denote the respective ring centroids. c The range of C13-C20, C14-C21, C15-C22 and C16-C23 bond lengths. d The range of C12/C14-C13-C20, C13/C15-C14-C21, C14/C16-C15-C22 and C11/C15-C16-C23 angles.
Figure S3. View of the molecular structure of 6. Displacement ellipsoids enclose the 30% probability level. The dihedral angle of the C(1-5) (Cp1) and C(11-16) planes is 43.69(9)°.

Table S3. Selected distances and angles for 6 (in Å and deg).a

<table>
<thead>
<tr>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-Cg1b</td>
<td>1.6491(7) [1.666]</td>
</tr>
<tr>
<td>Fe-Cg2b</td>
<td>1.6482(8) [1.664]</td>
</tr>
<tr>
<td>C1-C11</td>
<td>1.492(2) [1.500]</td>
</tr>
<tr>
<td>C11-C12</td>
<td>1.415(2) [1.419]</td>
</tr>
<tr>
<td>C12-C13</td>
<td>1.399(3) [1.408]</td>
</tr>
<tr>
<td>C13-C14</td>
<td>1.401(3) [1.407]</td>
</tr>
<tr>
<td>C14-C15</td>
<td>1.399(3) [1.408]</td>
</tr>
<tr>
<td>C15-C16</td>
<td>1.405(3) [1.410]</td>
</tr>
<tr>
<td>C16-C11</td>
<td>1.409(2) [1.416]</td>
</tr>
<tr>
<td>C-CH3c</td>
<td>1.514(3)-1.523(3)</td>
</tr>
<tr>
<td></td>
<td>[1.515-1.520]</td>
</tr>
</tbody>
</table>

a Values in square brackets have been calculated by DFT calculations. b The ring planes are defined as follows: Cp1 = C(1-5), Cp2 = C(6-10). Cg1 and Cg2 denote the respective ring centroids. c The range of C12-C17, C13-C18, C14-C19, C15-C20 and C16-C21 bond lengths. d The range of C11/C13-C12-C17, C12/C14-C13-C18, C13/C15-C14-C19, C14/C16-C15-C20 and C11/C15-C16-C21 angles.
Table S4. Crystallographic data, data collection and structure refinement parametersa

<table>
<thead>
<tr>
<th>Compound</th>
<th>3a</th>
<th>4a</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C\textsubscript{23}H\textsubscript{26}FeO\textsubscript{2}</td>
<td>C\textsubscript{23}H\textsubscript{26}FeO\textsubscript{2}</td>
<td>C\textsubscript{21}H\textsubscript{24}Fe</td>
</tr>
<tr>
<td>M/g mol-1</td>
<td>390.29</td>
<td>390.29</td>
<td>332.25</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>$P\bar{1}$ (no. 2)</td>
<td>$P2_1/c$ (no. 14)</td>
<td>$P2_1/c$ (no. 14)</td>
</tr>
<tr>
<td>a/Å</td>
<td>7.3695(2)</td>
<td>14.9261(5)</td>
<td>20.1331(2)</td>
</tr>
<tr>
<td>b/Å</td>
<td>10.1814(5)</td>
<td>7.3837(2)</td>
<td>9.1392(2)</td>
</tr>
<tr>
<td>c/Å</td>
<td>13.4315(6)</td>
<td>18.0000(6)</td>
<td>8.9108(4)</td>
</tr>
<tr>
<td>α/°</td>
<td>89.394(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β/°</td>
<td>86.159(3)</td>
<td>107.659(1)</td>
<td>102.700(1)</td>
</tr>
<tr>
<td>γ/°</td>
<td>75.385(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V/Å3</td>
<td>972.97(7)</td>
<td>1890.3(1)</td>
<td>1599.48(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>D_{calc}/g mL-1</td>
<td>1.332</td>
<td>1.371</td>
<td>1.38</td>
</tr>
<tr>
<td>μ(MoKα)/mm-1</td>
<td>0.788</td>
<td>0.812</td>
<td>0.937</td>
</tr>
<tr>
<td>Diffractions total</td>
<td>14778</td>
<td>26499</td>
<td>22400</td>
</tr>
<tr>
<td>R_{int}b/%</td>
<td>3.6</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Unique/observedc diffractions</td>
<td>4282/3653</td>
<td>3694/3349</td>
<td>3665/3133</td>
</tr>
<tr>
<td>R_{o} (obsd diffns)$c,d/%$</td>
<td>3.43</td>
<td>3.20</td>
<td>3.01</td>
</tr>
<tr>
<td>R_{w} (all diffns)$d/%$</td>
<td>4.48, 8.00</td>
<td>3.75, 7.40</td>
<td>3.92, 8.10</td>
</tr>
<tr>
<td>$\Delta\rho$e Å–3</td>
<td>0.47, –0.43</td>
<td>0.37, –0.49</td>
<td>0.33, –0.37</td>
</tr>
<tr>
<td>CCDC entry</td>
<td>718552</td>
<td>718553</td>
<td>718554</td>
</tr>
</tbody>
</table>

a Common details: T = 150(2) K. b $R_{\text{int}} = \Sigma |F_o|^2 - |F_c|^2(\text{mean})|/\Sigma |F_o|^2$, where $F_o^2(\text{mean})$ is the average intensity for symmetry-equivalent diffractions. c Diffractions with $I_o > 2\sigma(I_o)$. d $R = \Sigma |F_o| - |F_c|/\Sigma |F_o|$, $wR = [\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma w(F_o^2)^2]^{1/2}$.

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2009
IV. Electrochemistry

Table S5. Summary of the electrochemical data.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$E^{\circ'}$ (mV) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>+0.08</td>
</tr>
<tr>
<td>3b</td>
<td>+0.09</td>
</tr>
<tr>
<td>4a</td>
<td>+0.05</td>
</tr>
<tr>
<td>4b</td>
<td>+0.08</td>
</tr>
<tr>
<td>6</td>
<td>−0.02</td>
</tr>
</tbody>
</table>

a $E^{\circ'}$ is an average of the peak potentials from cyclic voltammetry: $E^{\circ'} = \frac{1}{2}(E_{pa} + E_{pc})$, and is given relative to the ferrocene/ferrocenium reference (for details, see below).

Electrochemical measurements were carried out with a computer-controlled multipurpose polarograph μAUTOLAB III (Eco Chemie, Netherlands) at 22 °C using a standard three-electrode cell with rotating platinum disc electrode (AUTOLAB RDE, 3 mm diameter) as the working electrode, platinum sheet auxiliary electrode, and Ag/AgCl (3 M KCl) reference electrode. The compounds were dissolved in dichloromethane (Fluka, absolute, declared H$_2$O content ≤0.005%) to give a solution containing ca. 1 × 10$^{-3}$ M of the analyte and 0.1 M Bu$_4$N[PF$_6$] (Fluka, purissimum for electrochemistry) as the supporting electrolyte. The solutions were deaerated with argon prior to the measurement and then kept under an argon blanket. The redox potentials are given relative to the ferrocene/ferrocenium reference.
V. Computational details

The molecules of 3a, a and 6 were also studied theoretically using density functional theory (DFT), in particular the Becke three parameter hybrid functional B3LYP\(^7\) that is known to be both reliable and accurate,\(^8\) and standard 6-31G* basis set. The geometry was optimized starting from the experimental geometry using analytic gradients as implemented in the Gaussian 03 program package.\(^9\) The resulting stationary points were checked to be true minima using the eigenvalues of the Hessian matrix. The calculated bond lengths and angles are given in Tables S1-3 for a comparison.
Figure S5. Selected molecular orbitals for 3a (0.05 a.u. isosurface plots).

orbital 103 (HOMO), $E = -0.19021$ a.u.

orbital 104 (LUMO), $E = -0.04828$ a.u.

orbital 101, $E = -0.21391$ a.u.

orbital 102, $E = -0.19306$ a.u.

orbital 99, $E = -0.22765$ a.u.

orbital 100, $E = -0.22266$ a.u.

orbital 97, $E = -0.25377$ a.u.

orbital 98, $E = -0.24582$ a.u.
Figure S5 (continued).

orbital 95, $E = -0.26507$ a.u.

orbital 96, $E = -0.26002$ a.u.

orbital 93, $E = -0.29019$ a.u.

orbital 94, $E = -0.27496$ a.u.

orbital 91, $E = -0.29821$ a.u.

orbital 92, $E = -0.29106$ a.u.
Figure S6. Selected molecular orbitals for 4a (0.05 a.u. isosurface plots).

orbital 103 (HOMO), $E = -0.19058$ a.u.

orbital 104 (LUMO), $E = -0.01805$ a.u.

orbital 101, $E = -0.21659$ a.u.

orbital 102, $E = -0.19312$ a.u.

orbital 99, $E = -0.22537$ a.u.

orbital 100, $E = -0.22453$ a.u.

orbital 97, $E = -0.25204$ a.u.

orbital 98, $E = -0.24632$ a.u.
Figure S6 (continued).

orbital 95, $E = -0.26436$ a.u.
orbital 96, $E = -0.26313$ a.u.

orbital 93, $E = -0.29026$ a.u.
orbital 94, $E = -0.26676$ a.u.

orbital 91, $E = -0.32860$ a.u.
orbital 92, $E = -0.32129$ a.u.
Figure S7. (a) DFT optimised geometry of hypothetic ferrocenyl-pentamethyl Dewar benzene. (b) Predicted bonds lengths for this species (in Å).
Figure S8. Selected molecular orbitals for Me$_5$Fc-Dewar benzene (0.05 a.u. isosurface plots).

- Orbital 88 (HOMO), $E = -0.18348$ a.u.
- Orbital 89 (LUMO), $E = -0.01030$ a.u.
- Orbital 86, $E = -0.20291$ a.u.
- Orbital 87, $E = -0.18885$ a.u.
- Orbital 84, $E = -0.22194$ a.u.
- Orbital 85, $E = -0.21795$ a.u.
- Orbital 82, $E = -0.25406$ a.u.
- Orbital 83, $E = -0.24396$ a.u.
Figure S8 (continued).

orbital 80, $E = -0.26519$ a.u.

orbital 81, $E = -0.26171$ a.u.

orbital 78, $E = -0.28518$ a.u.

orbital 79, $E = -0.27810$ a.u.

orbital 76, $E = -0.32021$ a.u.

orbital 77, $E = -0.31216$ a.u.
Figure S9. Selected molecular orbitals for 6 (0.05 a.u. isosurface plots).

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Energy (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>88 (HOMO)</td>
<td>-0.18775</td>
</tr>
<tr>
<td>89 (LUMO)</td>
<td>-0.00701</td>
</tr>
<tr>
<td>86</td>
<td>-0.21090</td>
</tr>
<tr>
<td>87</td>
<td>-0.19074</td>
</tr>
<tr>
<td>84</td>
<td>-0.22165</td>
</tr>
<tr>
<td>85</td>
<td>-0.21238</td>
</tr>
<tr>
<td>82</td>
<td>-0.24759</td>
</tr>
<tr>
<td>83</td>
<td>-0.24413</td>
</tr>
</tbody>
</table>

Electronic Supplementary Information for Dalton Transactions
This journal is © The Royal Society of Chemistry 2009
Figure S9 (continued).

<table>
<thead>
<tr>
<th>Orbital</th>
<th>Energy (a.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-0.26369</td>
</tr>
<tr>
<td>81</td>
<td>-0.26132</td>
</tr>
<tr>
<td>78</td>
<td>-0.31264</td>
</tr>
<tr>
<td>79</td>
<td>-0.30908</td>
</tr>
<tr>
<td>76</td>
<td>-0.34697s</td>
</tr>
<tr>
<td>77</td>
<td>-0.31806</td>
</tr>
<tr>
<td>76</td>
<td>-0.34697s</td>
</tr>
<tr>
<td>77</td>
<td>-0.31806</td>
</tr>
</tbody>
</table>
VI. Comparison of bond lengths in structurally characterised Dewar benzenes

![Diagram of compound 3a with bond lengths]

compound 3a
refcode CITSII

![Diagram of compound with bond lengths]

refcode JUJYOC
refcode NADXEV
refcode KELZIK

refcode KELZUW

refcode KEMBAF

refcode KEMBEJ
VII. References