# Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_name_full 'Dalton Trans.' _journal_coden_Cambridge 0222 _journal_volume ? _journal_page_first ? _journal_year ? _publ_contact_author_name 'Yurij Mozharivskyj' _publ_contact_author_email MOZHAR@MCMASTER.CA _publ_section_title ; Composition, structure, bonding and thermoelectric properties of "CuT2P3" and "CuT4P3", members of the T1-x(CuP3)x series with T being Si and Ge ; loop_ _publ_author_name 'Yurij Mozharivskyj' 'Faraz Ahmadpour' 'Lachlan M.D. Cranswick' 'Taras Kolodiazhnyi' ; A.Kracher ; 'Peng Wang.' # Attachment 'Cu0.84Si2.16P3.cif' data_i4bm2 _database_code_depnum_ccdc_archive 'CCDC 741044' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu0.56 P2 Si1.44' _chemical_formula_weight 137.97 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source Si Si 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting tetragonal _symmetry_space_group_name_H-M I-4m2 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'y, -x, -z' '-y, x, -z' 'x, -y, z' '-x, y, z' 'y, x, -z' '-y, -x, -z' 'x+1/2, y+1/2, z+1/2' '-x+1/2, -y+1/2, z+1/2' 'y+1/2, -x+1/2, -z+1/2' '-y+1/2, x+1/2, -z+1/2' 'x+1/2, -y+1/2, z+1/2' '-x+1/2, y+1/2, z+1/2' 'y+1/2, x+1/2, -z+1/2' '-y+1/2, -x+1/2, -z+1/2' _cell_length_a 3.6953(10) _cell_length_b 3.6953(10) _cell_length_c 5.2250(14) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 71.35(3) _cell_formula_units_Z 1 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 1044 _cell_measurement_theta_min 6.76 _cell_measurement_theta_max 34.11 _exptl_crystal_description Plate _exptl_crystal_colour black _exptl_crystal_size_max 0.022 _exptl_crystal_size_mid 0.019 _exptl_crystal_size_min 0.012 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.211 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 66 _exptl_absorpt_coefficient_mu 5.841 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.8025 _exptl_absorpt_correction_T_max 0.8859 _exptl_absorpt_process_details X-Red _exptl_special_details ; A numerical absorption correction was based on the crystal shape that was originally derived from the optical face indexing but later optimized against equivalent reflections using STOE X-Shape software (STOE & Cie GmbH, 2004) ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE IPDSII' _diffrn_measurement_method 'omega scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1044 _diffrn_reflns_av_R_equivalents 0.0410 _diffrn_reflns_av_sigmaI/netI 0.0218 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 5 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 6.76 _diffrn_reflns_theta_max 34.11 _reflns_number_total 98 _reflns_number_gt 84 _reflns_threshold_expression >2sigma(I) _computing_data_collection X-Area _computing_cell_refinement X-Area _computing_data_reduction X-Red32 _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0081P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.05(5) _refine_ls_number_reflns 98 _refine_ls_number_parameters 6 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0173 _refine_ls_R_factor_gt 0.0118 _refine_ls_wR_factor_ref 0.0192 _refine_ls_wR_factor_gt 0.0186 _refine_ls_goodness_of_fit_ref 0.971 _refine_ls_restrained_S_all 0.971 _refine_ls_shift/su_max 0.003 _refine_ls_shift/su_mean 0.002 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.0000 0.0000 0.0000 0.0046(3) Uani 0.276(13) 8 d SP . . Si1 Si 0.0000 0.0000 0.0000 0.0046(3) Uani 0.724(13) 8 d SP . . P2 P 0.0000 0.5000 0.7500 0.0091(5) Uani 1 8 d S . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0046(4) 0.0046(4) 0.0046(5) 0.000 0.000 0.000 Si1 0.0046(4) 0.0046(4) 0.0046(5) 0.000 0.000 0.000 P2 0.0090(6) 0.0090(6) 0.0093(8) 0.000 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 P2 2.2628(5) 9_544 ? Cu1 P2 2.2628(5) 1_544 ? Cu1 P2 2.2628(5) 1_554 ? Cu1 P2 2.2628(5) 9_444 ? Si1 P2 2.2628(5) 9_544 ? Si1 P2 2.2628(5) 1_544 ? Si1 P2 2.2628(5) 1_554 ? Si1 P2 2.2628(5) 9_444 ? P2 Si1 2.2628(5) 9_455 ? P2 Si1 2.2628(5) 1_566 ? P2 Cu1 2.2628(5) 1_566 ? P2 Cu1 2.2628(5) 9_455 ? P2 Si1 2.2628(5) 9 ? P2 Si1 2.2628(5) 1_556 ? P2 Cu1 2.2628(5) 9 ? P2 Cu1 2.2628(5) 1_556 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag P2 Cu1 P2 109.466(10) 9_544 1_544 ? P2 Cu1 P2 109.466(10) 9_544 1_554 ? P2 Cu1 P2 109.48(2) 1_544 1_554 ? P2 Cu1 P2 109.48(2) 9_544 9_444 ? P2 Cu1 P2 109.466(10) 1_544 9_444 ? P2 Cu1 P2 109.466(10) 1_554 9_444 ? P2 Si1 P2 109.466(10) 9_544 1_544 ? P2 Si1 P2 109.466(10) 9_544 1_554 ? P2 Si1 P2 109.48(2) 1_544 1_554 ? P2 Si1 P2 109.48(2) 9_544 9_444 ? P2 Si1 P2 109.466(10) 1_544 9_444 ? P2 Si1 P2 109.466(10) 1_554 9_444 ? Si1 P2 Si1 109.466(10) 9_455 1_566 ? Si1 P2 Cu1 109.466(10) 9_455 1_566 ? Si1 P2 Cu1 0.0 1_566 1_566 ? Si1 P2 Cu1 0.0 9_455 9_455 ? Si1 P2 Cu1 109.466(10) 1_566 9_455 ? Cu1 P2 Cu1 109.466(10) 1_566 9_455 ? Si1 P2 Si1 109.48(2) 9_455 9 ? Si1 P2 Si1 109.466(10) 1_566 9 ? Cu1 P2 Si1 109.466(10) 1_566 9 ? Cu1 P2 Si1 109.48(2) 9_455 9 ? Si1 P2 Si1 109.466(10) 9_455 1_556 ? Si1 P2 Si1 109.48(2) 1_566 1_556 ? Cu1 P2 Si1 109.48(2) 1_566 1_556 ? Cu1 P2 Si1 109.466(10) 9_455 1_556 ? Si1 P2 Si1 109.466(10) 9 1_556 ? Si1 P2 Cu1 109.48(2) 9_455 9 ? Si1 P2 Cu1 109.466(10) 1_566 9 ? Cu1 P2 Cu1 109.466(10) 1_566 9 ? Cu1 P2 Cu1 109.48(2) 9_455 9 ? Si1 P2 Cu1 0.0 9 9 ? Si1 P2 Cu1 109.466(10) 1_556 9 ? Si1 P2 Cu1 109.466(10) 9_455 1_556 ? Si1 P2 Cu1 109.48(2) 1_566 1_556 ? Cu1 P2 Cu1 109.48(2) 1_566 1_556 ? Cu1 P2 Cu1 109.466(10) 9_455 1_556 ? Si1 P2 Cu1 109.466(10) 9 1_556 ? Si1 P2 Cu1 0.0 1_556 1_556 ? Cu1 P2 Cu1 109.466(10) 9 1_556 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 34.11 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.283 _refine_diff_density_min -0.306 _refine_diff_density_rms 0.091 # Attachment 'Cu0.95Ge4.48P2.57.cif' data_Cu0 _database_code_depnum_ccdc_archive 'CCDC 741045' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu0.95 Ge4.48 P2.57' _chemical_formula_weight 465.16 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ge Ge 0.1547 1.8001 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Cubic _symmetry_space_group_name_H-M F-43m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x, y, -z' 'x, -y, -z' 'z, x, y' 'z, -x, -y' '-z, -x, y' '-z, x, -y' 'y, z, x' '-y, z, -x' 'y, -z, -x' '-y, -z, x' 'y, x, z' '-y, -x, z' 'y, -x, -z' '-y, x, -z' 'x, z, y' '-x, z, -y' '-x, -z, y' 'x, -z, -y' 'z, y, x' 'z, -y, -x' '-z, y, -x' '-z, -y, x' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x, -y+1/2, -z+1/2' 'z, x+1/2, y+1/2' 'z, -x+1/2, -y+1/2' '-z, -x+1/2, y+1/2' '-z, x+1/2, -y+1/2' 'y, z+1/2, x+1/2' '-y, z+1/2, -x+1/2' 'y, -z+1/2, -x+1/2' '-y, -z+1/2, x+1/2' 'y, x+1/2, z+1/2' '-y, -x+1/2, z+1/2' 'y, -x+1/2, -z+1/2' '-y, x+1/2, -z+1/2' 'x, z+1/2, y+1/2' '-x, z+1/2, -y+1/2' '-x, -z+1/2, y+1/2' 'x, -z+1/2, -y+1/2' 'z, y+1/2, x+1/2' 'z, -y+1/2, -x+1/2' '-z, y+1/2, -x+1/2' '-z, -y+1/2, x+1/2' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+1/2, y, -z+1/2' 'x+1/2, -y, -z+1/2' 'z+1/2, x, y+1/2' 'z+1/2, -x, -y+1/2' '-z+1/2, -x, y+1/2' '-z+1/2, x, -y+1/2' 'y+1/2, z, x+1/2' '-y+1/2, z, -x+1/2' 'y+1/2, -z, -x+1/2' '-y+1/2, -z, x+1/2' 'y+1/2, x, z+1/2' '-y+1/2, -x, z+1/2' 'y+1/2, -x, -z+1/2' '-y+1/2, x, -z+1/2' 'x+1/2, z, y+1/2' '-x+1/2, z, -y+1/2' '-x+1/2, -z, y+1/2' 'x+1/2, -z, -y+1/2' 'z+1/2, y, x+1/2' 'z+1/2, -y, -x+1/2' '-z+1/2, y, -x+1/2' '-z+1/2, -y, x+1/2' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+1/2, y+1/2, -z' 'x+1/2, -y+1/2, -z' 'z+1/2, x+1/2, y' 'z+1/2, -x+1/2, -y' '-z+1/2, -x+1/2, y' '-z+1/2, x+1/2, -y' 'y+1/2, z+1/2, x' '-y+1/2, z+1/2, -x' 'y+1/2, -z+1/2, -x' '-y+1/2, -z+1/2, x' 'y+1/2, x+1/2, z' '-y+1/2, -x+1/2, z' 'y+1/2, -x+1/2, -z' '-y+1/2, x+1/2, -z' 'x+1/2, z+1/2, y' '-x+1/2, z+1/2, -y' '-x+1/2, -z+1/2, y' 'x+1/2, -z+1/2, -y' 'z+1/2, y+1/2, x' 'z+1/2, -y+1/2, -x' '-z+1/2, y+1/2, -x' '-z+1/2, -y+1/2, x' _cell_length_a 5.4451(14) _cell_length_b 5.4451(14) _cell_length_c 5.4451(14) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 161.44(7) _cell_formula_units_Z 1 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 1054 _cell_measurement_theta_min 6.50 _cell_measurement_theta_max 34.45 _exptl_crystal_description rod _exptl_crystal_colour Black _exptl_crystal_size_max 0.251 _exptl_crystal_size_mid 0.225 _exptl_crystal_size_min 0.056 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.784 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 209 _exptl_absorpt_coefficient_mu 24.180 _exptl_absorpt_correction_type Numerical _exptl_absorpt_correction_T_min 0.0527 _exptl_absorpt_correction_T_max 0.4790 _exptl_absorpt_process_details X-Red _exptl_special_details ; A numerical absorption correction was based on the crystal shape that was originally derived from the optical face indexing but later optimized against equivalent reflections using STOE X-Shape software (STOE & Cie GmbH, 2004) ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE IPDSII' _diffrn_measurement_method 'omega scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1054 _diffrn_reflns_av_R_equivalents 0.0422 _diffrn_reflns_av_sigmaI/netI 0.0132 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 6.49 _diffrn_reflns_theta_max 34.42 _reflns_number_total 55 _reflns_number_gt 55 _reflns_threshold_expression >2sigma(I) _computing_data_collection X-Area _computing_cell_refinement X-Area _computing_data_reduction X-Red32 _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0040P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.076(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.00(6) _refine_ls_number_reflns 55 _refine_ls_number_parameters 6 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0058 _refine_ls_R_factor_gt 0.0058 _refine_ls_wR_factor_ref 0.0120 _refine_ls_wR_factor_gt 0.0120 _refine_ls_goodness_of_fit_ref 1.162 _refine_ls_restrained_S_all 1.162 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ge1 Ge 0.0000 0.0000 0.0000 0.01359(14) Uani 0.76 24 d SP . . Cu1 Cu 0.0000 0.0000 0.0000 0.01359(14) Uani 0.24 24 d SP . . P2 P 0.2500 0.2500 0.2500 0.0114(2) Uani 0.642(3) 24 d SP . . Ge2 Ge 0.2500 0.2500 0.2500 0.0114(2) Uani 0.358(3) 24 d SP . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ge1 0.01359(14) 0.01359(14) 0.01359(14) 0.000 0.000 0.000 Cu1 0.01359(14) 0.01359(14) 0.01359(14) 0.000 0.000 0.000 P2 0.0114(2) 0.0114(2) 0.0114(2) 0.000 0.000 0.000 Ge2 0.0114(2) 0.0114(2) 0.0114(2) 0.000 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ge1 Ge2 2.3578(6) . ? Ge1 P2 2.3578(6) . ? Ge1 Ge2 2.3578(6) 73_445 ? Ge1 P2 2.3578(6) 25_544 ? Ge1 P2 2.3578(6) 49_454 ? Ge1 P2 2.3578(6) 73_445 ? Ge1 Ge2 2.3578(6) 25_544 ? Ge1 Ge2 2.3578(6) 49_454 ? Cu1 Ge2 2.3578(6) . ? Cu1 P2 2.3578(6) . ? Cu1 Ge2 2.3578(6) 73_445 ? Cu1 P2 2.3578(6) 25_544 ? Cu1 P2 2.3578(6) 49_454 ? Cu1 P2 2.3578(6) 73_445 ? Cu1 Ge2 2.3578(6) 25_544 ? Cu1 Ge2 2.3578(6) 49_454 ? P2 Cu1 2.3578(6) 73 ? P2 Ge1 2.3578(6) 25 ? P2 Ge1 2.3578(6) 49 ? P2 Ge1 2.3578(6) 73 ? P2 Cu1 2.3578(6) 25 ? P2 Cu1 2.3578(6) 49 ? Ge2 Cu1 2.3578(6) 73 ? Ge2 Ge1 2.3578(6) 25 ? Ge2 Ge1 2.3578(6) 49 ? Ge2 Ge1 2.3578(6) 73 ? Ge2 Cu1 2.3578(6) 25 ? Ge2 Cu1 2.3578(6) 49 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Ge2 Ge1 P2 0.0 . . ? Ge2 Ge1 Ge2 109.5 . 73_445 ? P2 Ge1 Ge2 109.5 . 73_445 ? Ge2 Ge1 P2 109.5 . 25_544 ? P2 Ge1 P2 109.5 . 25_544 ? Ge2 Ge1 P2 109.5 73_445 25_544 ? Ge2 Ge1 P2 109.5 . 49_454 ? P2 Ge1 P2 109.5 . 49_454 ? Ge2 Ge1 P2 109.5 73_445 49_454 ? P2 Ge1 P2 109.5 25_544 49_454 ? Ge2 Ge1 P2 109.5 . 73_445 ? P2 Ge1 P2 109.5 . 73_445 ? Ge2 Ge1 P2 0.0 73_445 73_445 ? P2 Ge1 P2 109.5 25_544 73_445 ? P2 Ge1 P2 109.5 49_454 73_445 ? Ge2 Ge1 Ge2 109.5 . 25_544 ? P2 Ge1 Ge2 109.5 . 25_544 ? Ge2 Ge1 Ge2 109.5 73_445 25_544 ? P2 Ge1 Ge2 0.0 25_544 25_544 ? P2 Ge1 Ge2 109.5 49_454 25_544 ? P2 Ge1 Ge2 109.5 73_445 25_544 ? Ge2 Ge1 Ge2 109.5 . 49_454 ? P2 Ge1 Ge2 109.5 . 49_454 ? Ge2 Ge1 Ge2 109.5 73_445 49_454 ? P2 Ge1 Ge2 109.5 25_544 49_454 ? P2 Ge1 Ge2 0.0 49_454 49_454 ? P2 Ge1 Ge2 109.5 73_445 49_454 ? Ge2 Ge1 Ge2 109.5 25_544 49_454 ? Ge2 Cu1 P2 0.0 . . ? Ge2 Cu1 Ge2 109.5 . 73_445 ? P2 Cu1 Ge2 109.5 . 73_445 ? Ge2 Cu1 P2 109.5 . 25_544 ? P2 Cu1 P2 109.5 . 25_544 ? Ge2 Cu1 P2 109.5 73_445 25_544 ? Ge2 Cu1 P2 109.5 . 49_454 ? P2 Cu1 P2 109.5 . 49_454 ? Ge2 Cu1 P2 109.5 73_445 49_454 ? P2 Cu1 P2 109.5 25_544 49_454 ? Ge2 Cu1 P2 109.5 . 73_445 ? P2 Cu1 P2 109.5 . 73_445 ? Ge2 Cu1 P2 0.0 73_445 73_445 ? P2 Cu1 P2 109.5 25_544 73_445 ? P2 Cu1 P2 109.5 49_454 73_445 ? Ge2 Cu1 Ge2 109.5 . 25_544 ? P2 Cu1 Ge2 109.5 . 25_544 ? Ge2 Cu1 Ge2 109.5 73_445 25_544 ? P2 Cu1 Ge2 0.0 25_544 25_544 ? P2 Cu1 Ge2 109.5 49_454 25_544 ? P2 Cu1 Ge2 109.5 73_445 25_544 ? Ge2 Cu1 Ge2 109.5 . 49_454 ? P2 Cu1 Ge2 109.5 . 49_454 ? Ge2 Cu1 Ge2 109.5 73_445 49_454 ? P2 Cu1 Ge2 109.5 25_544 49_454 ? P2 Cu1 Ge2 0.0 49_454 49_454 ? P2 Cu1 Ge2 109.5 73_445 49_454 ? Ge2 Cu1 Ge2 109.5 25_544 49_454 ? Cu1 P2 Ge1 0.0 . . ? Cu1 P2 Cu1 109.5 . 73 ? Ge1 P2 Cu1 109.5 . 73 ? Cu1 P2 Ge1 109.5 . 25 ? Ge1 P2 Ge1 109.5 . 25 ? Cu1 P2 Ge1 109.5 73 25 ? Cu1 P2 Ge1 109.5 . 49 ? Ge1 P2 Ge1 109.5 . 49 ? Cu1 P2 Ge1 109.5 73 49 ? Ge1 P2 Ge1 109.5 25 49 ? Cu1 P2 Ge1 109.5 . 73 ? Ge1 P2 Ge1 109.5 . 73 ? Cu1 P2 Ge1 0.0 73 73 ? Ge1 P2 Ge1 109.5 25 73 ? Ge1 P2 Ge1 109.5 49 73 ? Cu1 P2 Cu1 109.5 . 25 ? Ge1 P2 Cu1 109.5 . 25 ? Cu1 P2 Cu1 109.5 73 25 ? Ge1 P2 Cu1 0.0 25 25 ? Ge1 P2 Cu1 109.5 49 25 ? Ge1 P2 Cu1 109.5 73 25 ? Cu1 P2 Cu1 109.5 . 49 ? Ge1 P2 Cu1 109.5 . 49 ? Cu1 P2 Cu1 109.5 73 49 ? Ge1 P2 Cu1 109.5 25 49 ? Ge1 P2 Cu1 0.0 49 49 ? Ge1 P2 Cu1 109.5 73 49 ? Cu1 P2 Cu1 109.5 25 49 ? Cu1 Ge2 Ge1 0.0 . . ? Cu1 Ge2 Cu1 109.5 . 73 ? Ge1 Ge2 Cu1 109.5 . 73 ? Cu1 Ge2 Ge1 109.5 . 25 ? Ge1 Ge2 Ge1 109.5 . 25 ? Cu1 Ge2 Ge1 109.5 73 25 ? Cu1 Ge2 Ge1 109.5 . 49 ? Ge1 Ge2 Ge1 109.5 . 49 ? Cu1 Ge2 Ge1 109.5 73 49 ? Ge1 Ge2 Ge1 109.5 25 49 ? Cu1 Ge2 Ge1 109.5 . 73 ? Ge1 Ge2 Ge1 109.5 . 73 ? Cu1 Ge2 Ge1 0.0 73 73 ? Ge1 Ge2 Ge1 109.5 25 73 ? Ge1 Ge2 Ge1 109.5 49 73 ? Cu1 Ge2 Cu1 109.5 . 25 ? Ge1 Ge2 Cu1 109.5 . 25 ? Cu1 Ge2 Cu1 109.5 73 25 ? Ge1 Ge2 Cu1 0.0 25 25 ? Ge1 Ge2 Cu1 109.5 49 25 ? Ge1 Ge2 Cu1 109.5 73 25 ? Cu1 Ge2 Cu1 109.5 . 49 ? Ge1 Ge2 Cu1 109.5 . 49 ? Cu1 Ge2 Cu1 109.5 73 49 ? Ge1 Ge2 Cu1 109.5 25 49 ? Ge1 Ge2 Cu1 0.0 49 49 ? Ge1 Ge2 Cu1 109.5 73 49 ? Cu1 Ge2 Cu1 109.5 25 49 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 34.42 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.405 _refine_diff_density_min -0.128 _refine_diff_density_rms 0.054 # Attachment 'Cu1.18Ge3.63P3.19.cif' data_cuge2p3 _database_code_depnum_ccdc_archive 'CCDC 741046' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu1.18 Ge3.63 P3.19' _chemical_formula_weight 437.27 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Ge Ge 0.1547 1.8001 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Cubic _symmetry_space_group_name_H-M F-43m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x, y, -z' 'x, -y, -z' 'z, x, y' 'z, -x, -y' '-z, -x, y' '-z, x, -y' 'y, z, x' '-y, z, -x' 'y, -z, -x' '-y, -z, x' 'y, x, z' '-y, -x, z' 'y, -x, -z' '-y, x, -z' 'x, z, y' '-x, z, -y' '-x, -z, y' 'x, -z, -y' 'z, y, x' 'z, -y, -x' '-z, y, -x' '-z, -y, x' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x, -y+1/2, -z+1/2' 'z, x+1/2, y+1/2' 'z, -x+1/2, -y+1/2' '-z, -x+1/2, y+1/2' '-z, x+1/2, -y+1/2' 'y, z+1/2, x+1/2' '-y, z+1/2, -x+1/2' 'y, -z+1/2, -x+1/2' '-y, -z+1/2, x+1/2' 'y, x+1/2, z+1/2' '-y, -x+1/2, z+1/2' 'y, -x+1/2, -z+1/2' '-y, x+1/2, -z+1/2' 'x, z+1/2, y+1/2' '-x, z+1/2, -y+1/2' '-x, -z+1/2, y+1/2' 'x, -z+1/2, -y+1/2' 'z, y+1/2, x+1/2' 'z, -y+1/2, -x+1/2' '-z, y+1/2, -x+1/2' '-z, -y+1/2, x+1/2' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+1/2, y, -z+1/2' 'x+1/2, -y, -z+1/2' 'z+1/2, x, y+1/2' 'z+1/2, -x, -y+1/2' '-z+1/2, -x, y+1/2' '-z+1/2, x, -y+1/2' 'y+1/2, z, x+1/2' '-y+1/2, z, -x+1/2' 'y+1/2, -z, -x+1/2' '-y+1/2, -z, x+1/2' 'y+1/2, x, z+1/2' '-y+1/2, -x, z+1/2' 'y+1/2, -x, -z+1/2' '-y+1/2, x, -z+1/2' 'x+1/2, z, y+1/2' '-x+1/2, z, -y+1/2' '-x+1/2, -z, y+1/2' 'x+1/2, -z, -y+1/2' 'z+1/2, y, x+1/2' 'z+1/2, -y, -x+1/2' '-z+1/2, y, -x+1/2' '-z+1/2, -y, x+1/2' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+1/2, y+1/2, -z' 'x+1/2, -y+1/2, -z' 'z+1/2, x+1/2, y' 'z+1/2, -x+1/2, -y' '-z+1/2, -x+1/2, y' '-z+1/2, x+1/2, -y' 'y+1/2, z+1/2, x' '-y+1/2, z+1/2, -x' 'y+1/2, -z+1/2, -x' '-y+1/2, -z+1/2, x' 'y+1/2, x+1/2, z' '-y+1/2, -x+1/2, z' 'y+1/2, -x+1/2, -z' '-y+1/2, x+1/2, -z' 'x+1/2, z+1/2, y' '-x+1/2, z+1/2, -y' '-x+1/2, -z+1/2, y' 'x+1/2, -z+1/2, -y' 'z+1/2, y+1/2, x' 'z+1/2, -y+1/2, -x' '-z+1/2, y+1/2, -x' '-z+1/2, -y+1/2, x' _cell_length_a 5.3934(16) _cell_length_b 5.3934(16) _cell_length_c 5.3934(16) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 156.89(8) _cell_formula_units_Z 1 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 1108 _cell_measurement_theta_min 6.55 _cell_measurement_theta_max 34.00 _exptl_crystal_description Shard _exptl_crystal_colour Black _exptl_crystal_size_max 0.155 _exptl_crystal_size_mid 0.090 _exptl_crystal_size_min 0.052 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.628 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 198 _exptl_absorpt_coefficient_mu 21.805 _exptl_absorpt_correction_type Empirical _exptl_absorpt_correction_T_min 0.2153 _exptl_absorpt_correction_T_max 0.5780 _exptl_absorpt_process_details X-Red _exptl_special_details ; A numerical absorption correction was based on the crystal shape that was originally derived from the optical face indexing but later optimized against equivalent reflections using STOE X-Shape software (STOE & Cie GmbH, 2004) ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE IPDSII' _diffrn_measurement_method 'omega scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1108 _diffrn_reflns_av_R_equivalents 0.0790 _diffrn_reflns_av_sigmaI/netI 0.0218 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 6.55 _diffrn_reflns_theta_max 33.99 _reflns_number_total 51 _reflns_number_gt 51 _reflns_threshold_expression >2sigma(I) _computing_data_collection X-Area _computing_cell_refinement X-Area _computing_data_reduction X-Red32 _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+0.2845P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.121(12) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.00 _refine_ls_number_reflns 51 _refine_ls_number_parameters 5 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0104 _refine_ls_R_factor_gt 0.0104 _refine_ls_wR_factor_ref 0.0248 _refine_ls_wR_factor_gt 0.0248 _refine_ls_goodness_of_fit_ref 1.149 _refine_ls_restrained_S_all 1.149 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Ge1 Ge 0.0000 0.0000 0.0000 0.0113(3) Uani 0.70 24 d SP . . Cu1 Cu 0.0000 0.0000 0.0000 0.0113(3) Uani 0.29 24 d SP . . Ge2 Ge 0.2500 0.2500 0.2500 0.0108(5) Uani 0.201(9) 24 d SP . . P2 P 0.2500 0.2500 0.2500 0.0108(5) Uani 0.799(9) 24 d SP . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Ge1 0.0113(3) 0.0113(3) 0.0113(3) 0.000 0.000 0.000 Cu1 0.0113(3) 0.0113(3) 0.0113(3) 0.000 0.000 0.000 Ge2 0.0108(5) 0.0108(5) 0.0108(5) 0.000 0.000 0.000 P2 0.0108(5) 0.0108(5) 0.0108(5) 0.000 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Ge1 P2 2.3354(7) . ? Ge1 Ge2 2.3354(7) . ? Ge1 P2 2.3354(7) 73_445 ? Ge1 Ge2 2.3354(7) 25_544 ? Ge1 Ge2 2.3354(7) 49_454 ? Ge1 Ge2 2.3354(7) 73_445 ? Ge1 P2 2.3354(7) 25_544 ? Ge1 P2 2.3354(7) 49_454 ? Cu1 P2 2.3354(7) . ? Cu1 Ge2 2.3354(7) . ? Cu1 P2 2.3354(7) 73_445 ? Cu1 Ge2 2.3354(7) 25_544 ? Cu1 Ge2 2.3354(7) 49_454 ? Cu1 Ge2 2.3354(7) 73_445 ? Cu1 P2 2.3354(7) 25_544 ? Cu1 P2 2.3354(7) 49_454 ? Ge2 Cu1 2.3354(7) 73 ? Ge2 Ge1 2.3354(7) 25 ? Ge2 Ge1 2.3354(7) 49 ? Ge2 Ge1 2.3354(7) 73 ? Ge2 Cu1 2.3354(7) 25 ? Ge2 Cu1 2.3354(7) 49 ? P2 Cu1 2.3354(7) 73 ? P2 Ge1 2.3354(7) 25 ? P2 Ge1 2.3354(7) 49 ? P2 Ge1 2.3354(7) 73 ? P2 Cu1 2.3354(7) 25 ? P2 Cu1 2.3354(7) 49 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag P2 Ge1 Ge2 0.0 . . ? P2 Ge1 P2 109.5 . 73_445 ? Ge2 Ge1 P2 109.5 . 73_445 ? P2 Ge1 Ge2 109.5 . 25_544 ? Ge2 Ge1 Ge2 109.5 . 25_544 ? P2 Ge1 Ge2 109.5 73_445 25_544 ? P2 Ge1 Ge2 109.5 . 49_454 ? Ge2 Ge1 Ge2 109.5 . 49_454 ? P2 Ge1 Ge2 109.5 73_445 49_454 ? Ge2 Ge1 Ge2 109.5 25_544 49_454 ? P2 Ge1 Ge2 109.5 . 73_445 ? Ge2 Ge1 Ge2 109.5 . 73_445 ? P2 Ge1 Ge2 0.0 73_445 73_445 ? Ge2 Ge1 Ge2 109.5 25_544 73_445 ? Ge2 Ge1 Ge2 109.5 49_454 73_445 ? P2 Ge1 P2 109.5 . 25_544 ? Ge2 Ge1 P2 109.5 . 25_544 ? P2 Ge1 P2 109.5 73_445 25_544 ? Ge2 Ge1 P2 0.0 25_544 25_544 ? Ge2 Ge1 P2 109.5 49_454 25_544 ? Ge2 Ge1 P2 109.5 73_445 25_544 ? P2 Ge1 P2 109.5 . 49_454 ? Ge2 Ge1 P2 109.5 . 49_454 ? P2 Ge1 P2 109.5 73_445 49_454 ? Ge2 Ge1 P2 109.5 25_544 49_454 ? Ge2 Ge1 P2 0.0 49_454 49_454 ? Ge2 Ge1 P2 109.5 73_445 49_454 ? P2 Ge1 P2 109.5 25_544 49_454 ? P2 Cu1 Ge2 0.0 . . ? P2 Cu1 P2 109.5 . 73_445 ? Ge2 Cu1 P2 109.5 . 73_445 ? P2 Cu1 Ge2 109.5 . 25_544 ? Ge2 Cu1 Ge2 109.5 . 25_544 ? P2 Cu1 Ge2 109.5 73_445 25_544 ? P2 Cu1 Ge2 109.5 . 49_454 ? Ge2 Cu1 Ge2 109.5 . 49_454 ? P2 Cu1 Ge2 109.5 73_445 49_454 ? Ge2 Cu1 Ge2 109.5 25_544 49_454 ? P2 Cu1 Ge2 109.5 . 73_445 ? Ge2 Cu1 Ge2 109.5 . 73_445 ? P2 Cu1 Ge2 0.0 73_445 73_445 ? Ge2 Cu1 Ge2 109.5 25_544 73_445 ? Ge2 Cu1 Ge2 109.5 49_454 73_445 ? P2 Cu1 P2 109.5 . 25_544 ? Ge2 Cu1 P2 109.5 . 25_544 ? P2 Cu1 P2 109.5 73_445 25_544 ? Ge2 Cu1 P2 0.0 25_544 25_544 ? Ge2 Cu1 P2 109.5 49_454 25_544 ? Ge2 Cu1 P2 109.5 73_445 25_544 ? P2 Cu1 P2 109.5 . 49_454 ? Ge2 Cu1 P2 109.5 . 49_454 ? P2 Cu1 P2 109.5 73_445 49_454 ? Ge2 Cu1 P2 109.5 25_544 49_454 ? Ge2 Cu1 P2 0.0 49_454 49_454 ? Ge2 Cu1 P2 109.5 73_445 49_454 ? P2 Cu1 P2 109.5 25_544 49_454 ? Cu1 Ge2 Ge1 0.0 . . ? Cu1 Ge2 Cu1 109.5 . 73 ? Ge1 Ge2 Cu1 109.5 . 73 ? Cu1 Ge2 Ge1 109.5 . 25 ? Ge1 Ge2 Ge1 109.5 . 25 ? Cu1 Ge2 Ge1 109.5 73 25 ? Cu1 Ge2 Ge1 109.5 . 49 ? Ge1 Ge2 Ge1 109.5 . 49 ? Cu1 Ge2 Ge1 109.5 73 49 ? Ge1 Ge2 Ge1 109.5 25 49 ? Cu1 Ge2 Ge1 109.5 . 73 ? Ge1 Ge2 Ge1 109.5 . 73 ? Cu1 Ge2 Ge1 0.0 73 73 ? Ge1 Ge2 Ge1 109.5 25 73 ? Ge1 Ge2 Ge1 109.5 49 73 ? Cu1 Ge2 Cu1 109.5 . 25 ? Ge1 Ge2 Cu1 109.5 . 25 ? Cu1 Ge2 Cu1 109.5 73 25 ? Ge1 Ge2 Cu1 0.0 25 25 ? Ge1 Ge2 Cu1 109.5 49 25 ? Ge1 Ge2 Cu1 109.5 73 25 ? Cu1 Ge2 Cu1 109.5 . 49 ? Ge1 Ge2 Cu1 109.5 . 49 ? Cu1 Ge2 Cu1 109.5 73 49 ? Ge1 Ge2 Cu1 109.5 25 49 ? Ge1 Ge2 Cu1 0.0 49 49 ? Ge1 Ge2 Cu1 109.5 73 49 ? Cu1 Ge2 Cu1 109.5 25 49 ? Cu1 P2 Ge1 0.0 . . ? Cu1 P2 Cu1 109.5 . 73 ? Ge1 P2 Cu1 109.5 . 73 ? Cu1 P2 Ge1 109.5 . 25 ? Ge1 P2 Ge1 109.5 . 25 ? Cu1 P2 Ge1 109.5 73 25 ? Cu1 P2 Ge1 109.5 . 49 ? Ge1 P2 Ge1 109.5 . 49 ? Cu1 P2 Ge1 109.5 73 49 ? Ge1 P2 Ge1 109.5 25 49 ? Cu1 P2 Ge1 109.5 . 73 ? Ge1 P2 Ge1 109.5 . 73 ? Cu1 P2 Ge1 0.0 73 73 ? Ge1 P2 Ge1 109.5 25 73 ? Ge1 P2 Ge1 109.5 49 73 ? Cu1 P2 Cu1 109.5 . 25 ? Ge1 P2 Cu1 109.5 . 25 ? Cu1 P2 Cu1 109.5 73 25 ? Ge1 P2 Cu1 0.0 25 25 ? Ge1 P2 Cu1 109.5 49 25 ? Ge1 P2 Cu1 109.5 73 25 ? Cu1 P2 Cu1 109.5 . 49 ? Ge1 P2 Cu1 109.5 . 49 ? Cu1 P2 Cu1 109.5 73 49 ? Ge1 P2 Cu1 109.5 25 49 ? Ge1 P2 Cu1 0.0 49 49 ? Ge1 P2 Cu1 109.5 73 49 ? Cu1 P2 Cu1 109.5 25 49 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 33.99 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.614 _refine_diff_density_min -0.305 _refine_diff_density_rms 0.073 # Attachment 'Cu1.08Si3.92P3.cif' data_Cu1 _database_code_depnum_ccdc_archive 'CCDC 741047' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'Cu1.08 P3 Si3.92' _chemical_formula_weight 271.65 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source Si Si 0.0817 0.0704 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' P P 0.1023 0.0942 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting cubic _symmetry_space_group_name_H-M F-43m loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x, y, -z' 'x, -y, -z' 'z, x, y' 'z, -x, -y' '-z, -x, y' '-z, x, -y' 'y, z, x' '-y, z, -x' 'y, -z, -x' '-y, -z, x' 'y, x, z' '-y, -x, z' 'y, -x, -z' '-y, x, -z' 'x, z, y' '-x, z, -y' '-x, -z, y' 'x, -z, -y' 'z, y, x' 'z, -y, -x' '-z, y, -x' '-z, -y, x' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x, y+1/2, -z+1/2' 'x, -y+1/2, -z+1/2' 'z, x+1/2, y+1/2' 'z, -x+1/2, -y+1/2' '-z, -x+1/2, y+1/2' '-z, x+1/2, -y+1/2' 'y, z+1/2, x+1/2' '-y, z+1/2, -x+1/2' 'y, -z+1/2, -x+1/2' '-y, -z+1/2, x+1/2' 'y, x+1/2, z+1/2' '-y, -x+1/2, z+1/2' 'y, -x+1/2, -z+1/2' '-y, x+1/2, -z+1/2' 'x, z+1/2, y+1/2' '-x, z+1/2, -y+1/2' '-x, -z+1/2, y+1/2' 'x, -z+1/2, -y+1/2' 'z, y+1/2, x+1/2' 'z, -y+1/2, -x+1/2' '-z, y+1/2, -x+1/2' '-z, -y+1/2, x+1/2' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+1/2, y, -z+1/2' 'x+1/2, -y, -z+1/2' 'z+1/2, x, y+1/2' 'z+1/2, -x, -y+1/2' '-z+1/2, -x, y+1/2' '-z+1/2, x, -y+1/2' 'y+1/2, z, x+1/2' '-y+1/2, z, -x+1/2' 'y+1/2, -z, -x+1/2' '-y+1/2, -z, x+1/2' 'y+1/2, x, z+1/2' '-y+1/2, -x, z+1/2' 'y+1/2, -x, -z+1/2' '-y+1/2, x, -z+1/2' 'x+1/2, z, y+1/2' '-x+1/2, z, -y+1/2' '-x+1/2, -z, y+1/2' 'x+1/2, -z, -y+1/2' 'z+1/2, y, x+1/2' 'z+1/2, -y, -x+1/2' '-z+1/2, y, -x+1/2' '-z+1/2, -y, x+1/2' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+1/2, y+1/2, -z' 'x+1/2, -y+1/2, -z' 'z+1/2, x+1/2, y' 'z+1/2, -x+1/2, -y' '-z+1/2, -x+1/2, y' '-z+1/2, x+1/2, -y' 'y+1/2, z+1/2, x' '-y+1/2, z+1/2, -x' 'y+1/2, -z+1/2, -x' '-y+1/2, -z+1/2, x' 'y+1/2, x+1/2, z' '-y+1/2, -x+1/2, z' 'y+1/2, -x+1/2, -z' '-y+1/2, x+1/2, -z' 'x+1/2, z+1/2, y' '-x+1/2, z+1/2, -y' '-x+1/2, -z+1/2, y' 'x+1/2, -z+1/2, -y' 'z+1/2, y+1/2, x' 'z+1/2, -y+1/2, -x' '-z+1/2, y+1/2, -x' '-z+1/2, -y+1/2, x' _cell_length_a 5.2413(16) _cell_length_b 5.2413(16) _cell_length_c 5.2413(16) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 143.98(8) _cell_formula_units_Z 1 _cell_measurement_temperature 293(2) _cell_measurement_reflns_used 1046 _cell_measurement_theta_min 6.74 _cell_measurement_theta_max 33.99 _exptl_crystal_description Plate _exptl_crystal_colour black _exptl_crystal_size_max 0.111 _exptl_crystal_size_mid 0.050 _exptl_crystal_size_min 0.044 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.133 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 131 _exptl_absorpt_coefficient_mu 5.584 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.5563 _exptl_absorpt_correction_T_max 0.8360 _exptl_absorpt_process_details X-Red _exptl_special_details ; A numerical absorption correction was based on the crystal shape that was originally derived from the optical face indexing but later optimized against equivalent reflections using STOE X-Shape software (STOE & Cie GmbH, 2004) ; _diffrn_ambient_temperature 293(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'STOE IPDSII' _diffrn_measurement_method 'omega scan' _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 1046 _diffrn_reflns_av_R_equivalents 0.0793 _diffrn_reflns_av_sigmaI/netI 0.0227 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 8 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 6.74 _diffrn_reflns_theta_max 33.99 _reflns_number_total 48 _reflns_number_gt 43 _reflns_threshold_expression >2sigma(I) _computing_data_collection X-Area _computing_cell_refinement X-Area _computing_data_reduction X-Red32 _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material 'SHELXL-97 (Sheldrick, 1997)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.103(10) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.04(4) _refine_ls_number_reflns 48 _refine_ls_number_parameters 5 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0110 _refine_ls_R_factor_gt 0.0086 _refine_ls_wR_factor_ref 0.0153 _refine_ls_wR_factor_gt 0.0150 _refine_ls_goodness_of_fit_ref 0.878 _refine_ls_restrained_S_all 0.878 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.0000 0.0000 0.0000 0.0083(3) Uani 0.271(7) 24 d SP . . Si1 Si 0.0000 0.0000 0.0000 0.0083(3) Uani 0.729(7) 24 d SP . . P2 P 0.2500 0.2500 0.2500 0.0081(4) Uani 0.75 24 d SP . . Si2 Si 0.2500 0.2500 0.2500 0.0081(4) Uani 0.25 24 d SP . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0083(3) 0.0083(3) 0.0083(3) 0.000 0.000 0.000 Si1 0.0083(3) 0.0083(3) 0.0083(3) 0.000 0.000 0.000 P2 0.0081(4) 0.0081(4) 0.0081(4) 0.000 0.000 0.000 Si2 0.0081(4) 0.0081(4) 0.0081(4) 0.000 0.000 0.000 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 Si2 2.2695(7) . ? Cu1 P2 2.2695(7) . ? Cu1 Si2 2.2695(7) 73_445 ? Cu1 P2 2.2695(7) 25_544 ? Cu1 P2 2.2695(7) 49_454 ? Cu1 P2 2.2695(7) 73_445 ? Cu1 Si2 2.2695(7) 25_544 ? Cu1 Si2 2.2695(7) 49_454 ? Si1 Si2 2.2695(7) . ? Si1 P2 2.2695(7) . ? Si1 Si2 2.2695(7) 73_445 ? Si1 P2 2.2695(7) 25_544 ? Si1 P2 2.2695(7) 49_454 ? Si1 P2 2.2695(7) 73_445 ? Si1 Si2 2.2695(7) 25_544 ? Si1 Si2 2.2695(7) 49_454 ? P2 Si1 2.2695(7) 73 ? P2 Cu1 2.2695(7) 25 ? P2 Cu1 2.2695(7) 49 ? P2 Cu1 2.2695(7) 73 ? P2 Si1 2.2695(7) 25 ? P2 Si1 2.2695(7) 49 ? Si2 Si1 2.2695(7) 73 ? Si2 Cu1 2.2695(7) 25 ? Si2 Cu1 2.2695(7) 49 ? Si2 Cu1 2.2695(7) 73 ? Si2 Si1 2.2695(7) 25 ? Si2 Si1 2.2695(7) 49 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Si2 Cu1 P2 0.0 . . ? Si2 Cu1 Si2 109.5 . 73_445 ? P2 Cu1 Si2 109.5 . 73_445 ? Si2 Cu1 P2 109.5 . 25_544 ? P2 Cu1 P2 109.5 . 25_544 ? Si2 Cu1 P2 109.5 73_445 25_544 ? Si2 Cu1 P2 109.5 . 49_454 ? P2 Cu1 P2 109.5 . 49_454 ? Si2 Cu1 P2 109.5 73_445 49_454 ? P2 Cu1 P2 109.5 25_544 49_454 ? Si2 Cu1 P2 109.5 . 73_445 ? P2 Cu1 P2 109.5 . 73_445 ? Si2 Cu1 P2 0.0 73_445 73_445 ? P2 Cu1 P2 109.5 25_544 73_445 ? P2 Cu1 P2 109.5 49_454 73_445 ? Si2 Cu1 Si2 109.5 . 25_544 ? P2 Cu1 Si2 109.5 . 25_544 ? Si2 Cu1 Si2 109.5 73_445 25_544 ? P2 Cu1 Si2 0.0 25_544 25_544 ? P2 Cu1 Si2 109.5 49_454 25_544 ? P2 Cu1 Si2 109.5 73_445 25_544 ? Si2 Cu1 Si2 109.5 . 49_454 ? P2 Cu1 Si2 109.5 . 49_454 ? Si2 Cu1 Si2 109.5 73_445 49_454 ? P2 Cu1 Si2 109.5 25_544 49_454 ? P2 Cu1 Si2 0.0 49_454 49_454 ? P2 Cu1 Si2 109.5 73_445 49_454 ? Si2 Cu1 Si2 109.5 25_544 49_454 ? Si2 Si1 P2 0.0 . . ? Si2 Si1 Si2 109.5 . 73_445 ? P2 Si1 Si2 109.5 . 73_445 ? Si2 Si1 P2 109.5 . 25_544 ? P2 Si1 P2 109.5 . 25_544 ? Si2 Si1 P2 109.5 73_445 25_544 ? Si2 Si1 P2 109.5 . 49_454 ? P2 Si1 P2 109.5 . 49_454 ? Si2 Si1 P2 109.5 73_445 49_454 ? P2 Si1 P2 109.5 25_544 49_454 ? Si2 Si1 P2 109.5 . 73_445 ? P2 Si1 P2 109.5 . 73_445 ? Si2 Si1 P2 0.0 73_445 73_445 ? P2 Si1 P2 109.5 25_544 73_445 ? P2 Si1 P2 109.5 49_454 73_445 ? Si2 Si1 Si2 109.5 . 25_544 ? P2 Si1 Si2 109.5 . 25_544 ? Si2 Si1 Si2 109.5 73_445 25_544 ? P2 Si1 Si2 0.0 25_544 25_544 ? P2 Si1 Si2 109.5 49_454 25_544 ? P2 Si1 Si2 109.5 73_445 25_544 ? Si2 Si1 Si2 109.5 . 49_454 ? P2 Si1 Si2 109.5 . 49_454 ? Si2 Si1 Si2 109.5 73_445 49_454 ? P2 Si1 Si2 109.5 25_544 49_454 ? P2 Si1 Si2 0.0 49_454 49_454 ? P2 Si1 Si2 109.5 73_445 49_454 ? Si2 Si1 Si2 109.5 25_544 49_454 ? Si1 P2 Cu1 0.0 . . ? Si1 P2 Si1 109.5 . 73 ? Cu1 P2 Si1 109.5 . 73 ? Si1 P2 Cu1 109.5 . 25 ? Cu1 P2 Cu1 109.5 . 25 ? Si1 P2 Cu1 109.5 73 25 ? Si1 P2 Cu1 109.5 . 49 ? Cu1 P2 Cu1 109.5 . 49 ? Si1 P2 Cu1 109.5 73 49 ? Cu1 P2 Cu1 109.5 25 49 ? Si1 P2 Cu1 109.5 . 73 ? Cu1 P2 Cu1 109.5 . 73 ? Si1 P2 Cu1 0.0 73 73 ? Cu1 P2 Cu1 109.5 25 73 ? Cu1 P2 Cu1 109.5 49 73 ? Si1 P2 Si1 109.5 . 25 ? Cu1 P2 Si1 109.5 . 25 ? Si1 P2 Si1 109.5 73 25 ? Cu1 P2 Si1 0.0 25 25 ? Cu1 P2 Si1 109.5 49 25 ? Cu1 P2 Si1 109.5 73 25 ? Si1 P2 Si1 109.5 . 49 ? Cu1 P2 Si1 109.5 . 49 ? Si1 P2 Si1 109.5 73 49 ? Cu1 P2 Si1 109.5 25 49 ? Cu1 P2 Si1 0.0 49 49 ? Cu1 P2 Si1 109.5 73 49 ? Si1 P2 Si1 109.5 25 49 ? Si1 Si2 Cu1 0.0 . . ? Si1 Si2 Si1 109.5 . 73 ? Cu1 Si2 Si1 109.5 . 73 ? Si1 Si2 Cu1 109.5 . 25 ? Cu1 Si2 Cu1 109.5 . 25 ? Si1 Si2 Cu1 109.5 73 25 ? Si1 Si2 Cu1 109.5 . 49 ? Cu1 Si2 Cu1 109.5 . 49 ? Si1 Si2 Cu1 109.5 73 49 ? Cu1 Si2 Cu1 109.5 25 49 ? Si1 Si2 Cu1 109.5 . 73 ? Cu1 Si2 Cu1 109.5 . 73 ? Si1 Si2 Cu1 0.0 73 73 ? Cu1 Si2 Cu1 109.5 25 73 ? Cu1 Si2 Cu1 109.5 49 73 ? Si1 Si2 Si1 109.5 . 25 ? Cu1 Si2 Si1 109.5 . 25 ? Si1 Si2 Si1 109.5 73 25 ? Cu1 Si2 Si1 0.0 25 25 ? Cu1 Si2 Si1 109.5 49 25 ? Cu1 Si2 Si1 109.5 73 25 ? Si1 Si2 Si1 109.5 . 49 ? Cu1 Si2 Si1 109.5 . 49 ? Si1 Si2 Si1 109.5 73 49 ? Cu1 Si2 Si1 109.5 25 49 ? Cu1 Si2 Si1 0.0 49 49 ? Cu1 Si2 Si1 109.5 73 49 ? Si1 Si2 Si1 109.5 25 49 ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 33.99 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.134 _refine_diff_density_min -0.157 _refine_diff_density_rms 0.038