ELECTRONIC SUPPLEMENTARY INFORMATION

Combining Oximes with Azides to Create a Novel 1-D [NaCoIII \textsubscript{2}] System: Synthesis, Structure and Solid-State NMR

Thushan Pathmalingam,a Fatemah Habib,a Cory M. Widdifield,a Francis Loiseau,a Tara J. Burchell,a Serge I. Gorelsky,b André M. Beauchemin,a,b David L. Bryce,a,b Muralee Murugesua,b

aDepartment of Chemistry, University of Ottawa, 10 Marie-Curie, Ottawa, ON, K1N6N5, Canada.
bCentre for Catalysis Research and Innovation, 30 Marie-Curie, Ottawa, ON, K1N6N5, Canada.
E-mail: m.murugesu@uottawa.ca; dbryce@uottawa.ca; Tel: +1 613 562 5800-2733.

Figure S1. 59Co MAS SSNMR spectrum of 1, acquired at 21.1 T and $v_{\text{MAS}} = 60$ kHz. The centreband is denoted with an asterisk. The experimental position of centre of gravity of the centreband is located at the position ($\delta_{\text{cg}} = 9912(5)$ ppm) that would be expected using the C_Q (59Co), η_Q, and δ_{iso} values quoted in the manuscript, after adjusting for the known second-order quadrupolar shift, δ_Q, which is equal to $-\left(1/392\right)(C_Q/v_\text{0})^2(1+(\eta_Q)^2/3) = -60$ ppm. (i.e., the centre of gravity of the centreband, δ_{cg}, is calculated to be located at $\delta_{\text{iso}} + \delta_Q = 9975 - 60 = 9915$ ppm, in excellent agreement with observations).