Electronic Supplementary Information for

Highly Active Copper-Catalysts for Azide-Alkyne Cycloaddition

Zsombor Gonda and Zoltán Novák *

Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter s. 1/A, H-1117 Budapest, Hungary

Email: <u>novakz@elte.hu</u>

Content

2
2
3
3
4
4
5
6
14
27

General Information

Analytical thin-layer chromatography (TLC) was performed on Merck DC precoated TLC plates with 0.25 mm Kieselgel 60 F₂₅₄. TLC spots were visualized under UV light at 254 nm. Column chromatography was carried out using silica gel 60 (0.040-0.063 mm) from Merck using hexanes - ethyl acetate eluent mixtures. ¹H and ¹³C NMR spectra were recorded on a Bruker DRX-250 spectrometer and on a Varian VNMRS 600 MHz spectrometer equipped with a HCN triple resonance probe head in CDCl₃ or d_6 -DMSO. ³¹P shifts were given relative to ortho-Phosphoric acid 85% as an external standard. Chemical shifts (δ) are expressed in parts per million units, relative to the residual solvent peak (δ = 7.26 ppm for ¹H, $\delta = 77.0$ ppm for ¹³C) where possible or alternatively to SiMe₄ ($\delta = 0.00$ ppm) as internal standard. Coupling constants (J) are given in Hz and multiplicities are designated as s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet) or broad (br). Combination gas chromatography and low resolution mass spectrometry was obtained on an Agilent 6890N gas Chromatograph (30 m x 0.25 mm column with 0.25 µm HP-5MS coating, He carrier gas) and Agilent 5973 Mass Spectrometer (Ion source: EI+, 70 eV, 230 °C, interface: 300 °C). High resolution mass spectra were recorded on an Agilent Technologies 6210 Time of Flight Mass Spectrometer. IR spectra were obtained on a Bruker IFS55 spectrometer on a single-reflexion diamond ATR unit. Samples for melting point determination were recrystallyzed from toluene or hexanes. Melting points were determined in capillary tubes with a Büchi apparatus and are uncorrected.

Starting acetylenes are commercially available. Acetylene $2g^1$ and $2h^2$ were prepared using literature procedures. Azides (1e,f) were obtained from commercial sources (Aldrich, Fluka) and used without further purification. Compounds $1k^3$ and $1l^4$ were prepared using literature procedures.

Optimization Studies

All optimization studies were performed in screw capped 4 ml glass vials. Solid reactants (Cusalt, ligands, bases) were measured first, then solvent was added followed by the phenylacetylene (0.25 mmol, 27.5 μ l) and benzyl azide (0.25 mmol, 31.1 μ l). The reactions were stirred at 25°C, and samples were taken, diluted and analyzed with GC, GC-MS.

Ligand Screening

Solutions of the copper complexes were made in a 10.00mL flask with DCM using 0.025mmol CuOAc and 0.05mmol monodentate or 0.025mmol bidentate ligand. In a 4mL screw capped vial the phenylacetylene (0.5 mmol) and the benzyl azide (0.5 mmol) was dissolved in 200μ l DCM, then 50μ l solution of the catalyst mixture was added. Samples were taken after 5 hours, diluted with DCM and analyzed by GC.

	+	
Entry	Phosphane	Conversion [%] ^[a]
1	Ph ₃ P ^[b]	100
2	(4-Fluorophenyl)₃P	43
3	(4-Methoxyphenyl) ₃ P	48
4	Cy ₃ P	64
5	XPhos ^[c]	0
6	BINAP	38
7	Dppe	68
8	Dppp ^[d]	100
9	Dppb	10

[a] Conversions were determined by GC. [b] Conversion after 3 hours. [c] 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl.
 [d] Conversion after 4 hours.

Solvent effect

In a 4mL screw capped vial the copper(I) complex (0.0001mmol), terminal acetylene (0.25 mmol) and the azide (0.25 mmol) was dissolved in 250 µL solvent. The reactions were stirred at 25°C. Samples were taken after 3 hours, diluted with DCM and analyzed by GC. (In parentheses: conversion with 0.05% copper salt after 3 hours)

1a	=	05% Catalyst Solvent, 25°C, 3h	N≓N N 3aa		
Solvent	1% CuOAc Conversion	1% Cu(I)- butyrate	0.05% CuNO₃(PPh₃)₂	0.05% CuOAc(PPh ₃) ₂	0.05% C ₃ H ₇ COOCu(PPh ₃) ₂
	[%]	[%]	Conversion [%]	Conversion [%]	Conversion [%]
THF	8	4	0	0	0
EtOH/water	31	36	0	0	0
Hexane	0	3	12	12	12
MeCN	60	70	14	26	63

Chloroform	86	80	45	61	96
Toluene	45	87	50	83	96
DCE	99	98	32	92	100
DCM	99 (49)	99 (78)	84	100	100

Catalyst Loading

In a 4mL screw capped vial the terminal acetylene (0.25 mmol) and the azide (0.25 mmol) was dissolved in 200 μ L DCM. 10.00mL Solution of the catalyst was prepared, dissolving 16.9mg (0.025mmol) of C₃H₇COOCu(PPh₃)₂ in DCM. For the reactions 50 μ L of the catalyst solution was used.

Preparation of azides

Benzyl azide.⁵

In 500 ml round bottomed flask we measured 11.9 ml (100 mmol) benzyl bromide and 400 ml acetone-water mixture (3:1 ratio). During stirring sodium azide (13.0 g,

200 mmol) was added in small portions. The reaction mixture was stirred for 15 min at 25° C. The product was diluted with 400 ml dichloromethane and extracted with water and brine. The organic phase was dried over MgSO₄, and then the solvent was evaporated. –the crude product was purified with vacuum distillation (73 °C-on 14 mbar-on). Yield: 11.3g, 84.9 mmol 85% MS (EI, 70eV) m/z (% relative intensity, ion): 133(30, [M⁺]), 133(30), 104(60), 91(100), 77(65), 65(20), 51(40).

4-Nitrobenzylazide,⁶ **4-iodobenzylazide**⁷ and **4-bromobenzylazide**⁸ were prepared using the procedure described above. The azides were analyzed with GC-MS and NMR.

N₃ **2-Azido-1-chloropropane.** Sodium azide (923 mg, 0.0142 mol) was added to a solution of 1-bromo-3-chloro-2-methyl-propane (1.17mL, 1.705g, 0.01mol) in DMSO (20 mL). After 20 h of stirring at room temperature, 30 mL of water was added, followed by extraction with diethyl ether (50 mL x 3). The organic phase was washed with H₂O (50 mL x 2) and then dried (MgSO₄) and concentrated under reduced pressure to give pure 1-azido-3-chloro-2-methyl-propane (**10a**) as colorless oil (1.123 g, 84 %). ¹H NMR (250 MHz, CDCl₃): δ = 3.53-3.34 (m, 4H), 2.16-2.01 (m, 1H), 1.05 (d, 3H, *J* = 7.0 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃):

 δ = 54.1, 47.4, 35.6, 15.5 ppm. MS (EI, 70 eV): *m/z* (%): 137 (5), 133(15). 90 (15). 77 (45), 70(40), 56 (100), 49 (70).

Butyl azide,⁹ **Ethyl-5-azidopentanoate**,¹⁰ and **6-azidohex-1-ene**¹¹ were prepared using the procedure described above. The azides were analyzed with GC-MS and NMR.

Preparation of Copper-complexes

Copper(I)-acetate.¹² In 50 ml round bottomed flask was flushed with argon, then copper(II)acetate (0,61 g 3,3 mmol) was placed, then abs. MeCN (16 ml) and 4mL acetic acid – aceticacid anhydride (4:1) mixture was added, followed by copper foil (1,53 g, 24,1 mmol). The deep green reaction mixture was stirred until it become colorless (typically 48 hours). The colorless solution was added to 45 ml abs. diethyl ether (previously deoxygenated). The white precipitate was filtered quickly and washed with argon. The product was stored under argon in a dark container.

Bis-triphenylphosphano-copper(I)-acetate.¹³ In a 10 mL round bottomed flask copper(I)-acetate (0.123 g, 1.0 mmol) and PPh₃ (1.115 g, 4.25 mmol) in 6 mL toluene were stirred for 30 min at 25°C under argon. The white crystalline product was filtered, washed with ether and dried in vacuum. Mp.: 170-173 °C White crystals. 363 mg (0.940 mmol), yield: 94 %

Copper(II)-butyrate.¹⁴ In a 25 mL round bottomed flask basic copper(II)-carbonate (2.21 g, 10 mmol) was refluxed in butyric acid (8.81 g, 100mmol) for 6 hours. After cooling to room temperature, the deep green crystalline product was filtered and dried under vacuum. 1.581 g (6.65 mmol) yield: 66 %.

Copper(I)-butyrate.¹² The procedure for the preparation of CuOAc was used. Starting from 0.594 g (2.5 mmol) copper(II)-butyrate, 235 mg (1.55 mmol) Cu(I)-butyrate was obtained as white crystals. Yield: 62 %

Bis-triphenylphosphano-copper(I)-butyrate. In a 10 mL round bottomed flask copper(I)-butyrate (0.117 g, 0.77 mmol) and PPh₃ (0.87 g, 3.32 mmol) in 4 mL toluene were stirred for 30 min at 25°C under argon. The white crystalline product was filtered, washed with ether and dried in vacuum. Mp.: 179-183 °C. White crystals. 332 mg (0.493 mmol), yield: 64 %. ¹H NMR (600 MHz, CDCl₃): δ = 7.33-7.31 (m, 20H), 7.23-7.20 (m, 15H), 2.20 (t, 2H, *J* = 7.2 Hz), 1.65-1.59 (m, 2H), 0.89 (t, 2H, *J* = 7.2 Hz) ppm. ¹³C NMR (150 MHz, CDCl₃): δ = 181.6, 133.8 (d, *J* = 14.25 Hz), 132.9 (d, *J* = 29.85

Hz), 129.6, 128.5 (d, J = 7.8 Hz), 39.1, 19.9, 14.2 ppm. ³¹P (242.85MHz, CDCl₃): $\delta = -2.07$ ppm. IR (ATR): 3054, 2949, 1549, 1477, 1430, 1407, 1305, 1180, 1092 cm⁻¹.

Synthesis of Triazoles

In a 4mL screw capped vial the terminal acetylene (0.5 mmol) and the azide (0.5 mmol) was measured. 10.00mL DCM solution of the catalyst was prepared, dissolving 33.8mg (0.05mmol) of $C_3H_7COOCu(PPh_3)_2$ in the solvent. For the reactions usually 50µL of the catalyst solution was used, and the total volume of the solvent was 300 µL. The reaction was stirred at room temperature (28°C) for the indicated time. Then the solvent was evaporated affording the crude product. The products usually proved to be pure enough, but further purifications such as recrystallyzation of the solids from toluene or silicagel column chromatography afforded purified product.

1-Benzyl-4-phenyl-1*H***-1,2,3-triazole.**¹⁵ **(3aa).** 0.05% C₃H₇COOCu(PPh₃)₂ was used. White solid. 116mg (0.495mmol), 99% yield, Mp.: 128-129 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.82 (d, 2H, *J* = 6.75 Hz), 7.69 (s, 1H), 7.42 - 7.26 (m, 8H), 5.53 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 148.0, 134.6, 130.4, 128.9, 128.6, 128.5, 128.0, 127.0, 127.0, 125.5, 119.5 ppm. MS (EI, 70 eV): *m/z* (%): 235 (20, [M⁺]). 220(70), 205(100), 176(75), 151(20), 102(15), 88(20).

1-(4-iodobenzyl)-4-phenyl-1H-1,2,3-triazole (3ba). 0.1% C₃H₇COOCu(PPh₃)₂ was used. White crystals. Yield: 153 mg (0.425 mmol), 85%. Mp.154-156: °C. ¹H NMR (250 MHz, d₆-DMSO): δ = 8.63 (s, 1H), 7.86 (d, 2 H, *J* = 7.5 Hz), 7.77 (d, 2 H, *J* = 8.25 Hz), 7.43 (t, 2 H, *J* = 7.25 Hz); 7.37 (d, 1 H, *J* = 7.25 Hz), 7.17 (d, 2 H, *J* = 8.25 Hz), 5.62 (s, 2H) ppm. ¹³C NMR (62.5 MHz, d₆-DMSO): δ = 146.6, 137.5, 135.7, 130.5; 130.1; 128.8; 127.9; 125.1; 121.5; 94.4; 52.4 ppm. IR (ATR): 3082, 2922, 1483, 1442, 1404, 1221, 1077, 1049, 1007 cm⁻¹.MS (EI, 70 eV): *m/z* (%): 361(8, [M⁺]), 332 (10), 230 (8), 217 (30), 206 (25), 116 (100), 89 (70). HRMS: *m/z* [M + H]⁺ calcd for C₁₅H₁₃IN₃: 362.0149; found: 362.0144.

1-(4-bromobenzyl)-4-phenyl-1H-1,2,3-triazole¹⁶ (3ca). 0.1% C₃H₇COOCu(PPh₃)₂ was used. White crystals. Yield: 142mg (0.455 mmol), 91%. Mp.: 151-152°C. ¹H NMR (250 MHz, d₆-DMSO): $\delta = 8.65$ (s, 1H), 7.87 (d, 2 H, J = 7.5 Hz), 7.61 (d, 2 H, J = 8.25 Hz), 7.43 (t, 2 H, J = 7.25 Hz); 7.35-7.30 (m, 3 H), 5.64 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 146.5$, 135.3, 131.6, 130.5, 130.0, 128.8, 127.8, 125.0, 121.5, 121.3, 52.2 MS (EI, 70 eV): m/z (%): 313, 315 (5, [M⁺]), 207(10), 169 (10), 171(10), 116 (100), 89 (30).

1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole.¹⁷ (3da). 0.1% C₃H₇COOCu(PPh₃)₂ was used. White solid. 122 mg (0.435 mmol), 87% yield, Mp.: 140-142 °C. ¹H NMR (250 MHz, d₆-DMSO): δ = 8.70 (s, 1H), 8.26 (d, 2H, *J* = 8.25 Hz), 7.87 (d, 2H, *J* = 7.75 Hz), 7.59 (d, 2H, *J* = 8.5 Hz), 7.44 (t, 2H, *J* = 8.0 Hz), 7.35 (d, 1H), 5.85 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 147.6, 147.2, 143.7, 130.9, 129.3, 129.3, 128.4, 125.6, 124.3, 122.4, 52.5 ppm. MS (EI, 70 eV): *m/z* (%): 281(8, [M⁺]), 281(8), 207(30), 116(100), 106(25), 89(35).

1-benzyl-4-m-tolyl-1H-1,2,3-triazole (3ab). 0.05% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 117 mg (0.47 mmol), 94% yield, Mp.: 144-146 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.67 (s, 2H), 7.60 (d, 1H, *J* = 7.5 Hz), 7.41-7.26 (m, 6H), 7.15 (d, 1H, *J* = 7,5 Hz), 5.55 (s, 2H), 2.38 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 138.4, 134.6, 130.3, 129.0, 128.8, 128.6, 128.0, 127.9, 126.3, 122.7, 119.4, 77.5, 77.0, 76.5, 54.0, 21.3 ppm. MS (EI, 70 eV): *m/z* (%): 249(10, [M⁺]), 220(25), 130(100), 91(75), 77(15).

1-Benzyl-4-pyridyl-1*H***-1,2,3-triazole.**¹⁸ (3ac). 0.05% C₃H₇COOCu(PPh₃)₂ was used. Light brown crystals. 110 mg (0.465 mmol), 93% yield, Mp.: 110-112 °C. ¹H NMR (250 MHz, CDCl₃): δ = 8.48 (s, 1H), 8.13 (d, 1H, *J* = 8.0 Hz), 8.03 (s, 1H), 7.71 (t, 1H), 7.28 (d, 5H, *J* = 10.5 Hz), 7.15 (t, 1H), 5.51 (s, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 150.0, 149.1, 148.5, 136.6, 134.2, 128.9, 128.6, 128.0, 122.6, 121.8, 119.9, 54.1 ppm. MS (EI, 70 eV): *m/z* (%): 236 (5, [M⁺]), 207(55), 117(50), 91(95), 65(20).

4-Phenyl-1-((phenylthio)methyl)-1*H***-1,2,3-triazole (3ea).** 0.1% $C_3H_7COOCu(PPh_3)_2$ was used. White crystals. 128 mg (0.48 mmol), 96% yield, Mp.: 89-91 °C. $R_f = 0.42$ (hexanes–ethyl acetate, 3:1). ¹H NMR (250 MHz, CDCl_3): $\delta = 7.81-7.78$ (m, 3 H), 7.44-7.30 (m, 8 H), 5.62 (s, 2 H). ¹³C NMR (62.5 MHz, CDCl_3): $\delta = 147.9$, 132.0, 131.7, 130.1, 129.3, 128.7, 128.5, 128.1, 125.5, 119.0, 53.7. IR(ATR): max 3121, 3060, 2101, 1481, 1439, 1191, 1076, 740, 690 cm⁻¹. MS (EI, 70 eV): m/z (%): 267 (8) [M⁺], 238 (35), 130 (100), 123 (18), 116 (15), 109 (29), 103 (69), 77 (55), 65 (18). HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₄N₃S: 268.0903 ; found: 268.0901.

1-(1-Adamantyl)-4-phenyl-1*H***-1,2,3-triazole**¹⁹ (**3fa**). 0.15% C₃H₇COOCu(PPh₃)₂ was used. White solid. 128 mg (0.46 mmol), 92% yield. Mp.: 203-204 °C (dec). $R_f = 0.57$ (hexanes–ethyl acetate, 3:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 7.75-7.79$ (m, 3 H), 7.19-7.36 (m, 3 H), 2.21 (br s, 9 H), 1.73 (br s, 6 H). ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 146.7$, 131.1, 128.7, 127.8, 125.6, 116.0, 59.5, 43.0, 35.9, 29.4. MS (EI, 70 eV): *m/z* (%): 279 (9) [M⁺], 223 (12), 181 (8), 135 (100), 116 (20), 102 (15), 93 (31), 79 (36), 67 (12).

4-(1-benzyl-1H-1,2,3-triazol-4-yl)butanenitrile (3ad). 0.1% $C_3H_7COOCu(PPh_3)_2$ was used. White solid. 110 mg (0.49 mmol), 98% yield. ¹H NMR (250 MHz, CDCl₃): $\delta = 7.313-7.29$ (m, 3 H), 7.21-7.18(m, 3 H), 5.43 (s, 2H), 2.77 (t, 2H, J = 7.0 Hz), 2.34 (t, 2 H, J = 7.25 Hz), 1.99 (t, 2H, J = 7.0 Hz). ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 134.6$, 129.1, 128.7, 128.0, 119.3, 54.1, 24.4, 24.2, 16.4. IR (ATR): 3113, 3065, 2940, 2247, 1556, 1497, 1448, 1311, 1214, 1175, 1129, 1057, 858 cm⁻¹. MS (EI, 70 eV): m/z (%): 226 (5, [M⁺]), 187 (9), 144 (8), 130 (8), 104 (8), 91 (100), 65 (15). HRMS: m/z [M + H]⁺ calcd for C₁₃H₁₅N₄: 227.1291 ; found: 227.1295

(1-benzyl-1H-1,2,3-triazol-4-yl)methyl acetate (3ae). 0.05% $C_3H_7COOCu(PPh_3)_2$ was used. Yellow oil. Yield: 114 mg (0.495 mmol), 99%. ¹H NMR (250 MHz, CDCl₃): δ = 7.53 (s, 1H), 7.32-7.21 (m, 5H), 5.46 (s, 2H), 5.11 (s, 2H), 1.98 (s, 3H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 170.6, 142.9, 134.2, 128.9, 128.6, 127.9, 123.5, 57.3 53.9, 20.6 ppm. IR (ATR): 3127, 1731, 1496, 1445, 1388, 1368, 1330, 1258, 1216, 1125, 1033, 995 cm⁻¹. MS (EI, 70 eV): *m/z* (%):231(1, [M⁺]), 188(10), 161(10), 91(100), 65(10). HRMS: *m/z* [M + H]⁺ calcd for C₁₂H₁₄N₃O₂: 232.1081; found: 232.1080.

1-benzyl-4-butyl-1H-1,2,3-triazole²⁰ (3af). 0.15% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 100 mg (0.433 mmol), 93% yield, Mp.: 55-56 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.32 (m, 3H), 7.29 (m, 3H), 5.44 (s, 2H), 2.65 (t, 2H, *J* = 7.5 Hz), 1.65-1.56 (m, 2H), 1.39-1.27 (m, 2H), 0.87 (t, 3H, *J* = 7.25 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 134.9, 128.8, 128.3, 128.0, 127.7, 120.4, 53.7, 31.3, 25.2, 22.1, 13.6 ppm. MS (EI, 70 eV): *m/z* (%): 215(0, [M⁺]), 173(15), 104(10), 91(100), 65(25).

1-(3-Chloro-2-methylpropyl)-4-phenyl-1*H***-1,2,3-triazole (3ga).** 0.05% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 99 mg (0.45 mmol), 90% yield, Mp.: 51-55 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.75-7.72 (m, 3H), 7.34-719 (m, 3H), 4.34-4.19 (m, 2H), 3.35 (d, 2H, *J* = 5.0), 2.48-2.41 (m, 1H), 0.98 (2, 3H, *J* = 6.8) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 147.4, 130.3, 128.7, 128.0, 125.5, 120.4, 52.3, 47.2, 36.0, 15.3 ppm. IR (ATR): 3121, 2975, 1483, 1464, 1436, 1277, 1222, 1079, 1042 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 235 (9) [M⁺], 172 (13), 158 (6), 145 (6), 130 (47), 117 (100), 103 (41), 89 (31), 77 (24), 63 (21), 55 (25). HRMS: *m/z* [M + H]⁺ calcd for C₁₂H₁₅ClN₃: 236.0949; found: 236.0951.

1-butyl-4-phenyl-1H-1,2,3-triazole²¹ (**3ha**). 0.05% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 94 mg (0.47 mmol), 94% yield, Mp.: 46-47 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.74 (d, 2H, *J* = 7.0 Hz), 7.67 (s, 1H), 7.32-7.17 (m, 3H), 4.26 (t, 2H, *J* = 7.0 Hz), 1.83-1.71 (m, 2H), 1.31-1.16 (m, 2H), 0.85 (t, 3H, *J* = 7.0 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 147.4, 130.6, 128.6, 127.8, 125.4, 119.4, 49.8, 32.0, 19.4, 13.2 ppm. MS (EI, 70 eV): *m/z* (%): 201(10, [M⁺]), 172(10), 130(20), 117(100), 103(20), 89(25).

Ethyl-5-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-pentanoate (3ia). 0.05% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 131 mg (0.48 mmol), 96% yield, Mp.: 52-53 °C. R_f = 0.61 (hexanes-ethyl acetate, 1:1). ¹H NMR (MHz, CDCl₃): δ = 7.79 (m, 3H), 7.38-7.23 (m, 3H), 4.35 (t, 2H, *J* = 7.0 Hz), 4.10-4.01 (m, 2H), 2.31 (t, 2H, *J* = 7.25 Hz) 1.97-1.85 (m, 2H), 1.66-1.54 (m, 2H), 1.21 (t, 3H, *J* = 7.25 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 172.7, 147.4, 130.4, 128.6, 127.8, 125.4, 119.5, 60.2, 49.7, 33.1, 29.3, 21.5, 13.9 ppm. IR (ATR): 3122, 2933, 1729, 1463, 1378, 1331, 1254, 1186 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 273(15, [M⁺]), 273(15), 200(50), 129(60), 116(65), 83(70), 55(100). HRMS: *m/z* [M + H]⁺ calcd for C₁₅H₂₀N₃O₂: 274.1550; found: 274.1549.

1-(hex-5-enyl)-4-phenyl-1H-1,2,3-triazole (3ja). 0.05% C₃H₇COOCu(PPh₃)₂ was used. White crystals. 103 mg (0.455 mmol), 91% yield. Mp.: 47-48 °C. ¹H NMR (250 MHz, CDCl₃): δ = 7.83 (d, 2H, *J* = 8.0 Hz), 7.77 (s, 1H), 7.42-7.26 (m, 3H), 5.81-5.65 (m, 1H), 5.02-4.93 (m, 2H), 4.36 (t, 2H, *J* = 7.0 Hz), 2.10-2.02 (m, 2H), 1.96-1.84 (m, 2H), 1.46-1.34 (m, 2H) ppm. ¹³C NMR (62.5 MHz, CDCl₃): δ = 147.4, 137.5, 130.5, 128.6, 127.8, 125.4, 119.4, 115.0, 49.9, 32.7, 29.4, 25.4 ppm. IR(ATR): v_{max} 3121, 3082, 2931, 2860, 1642, 1463, 1217, 1078, 911, 761, 693 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 227(15, [M⁺]), 227(15), 198(20), 117(100), 102(35), 89(45), 55(70). HRMS: *m/z* [M + H]⁺ calcd for C₁₄H₁₈N₃: 228.1495; found: 228.1491.

Ethyl 5-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)pentanoate (3ie). 0.05% C₃H₇COOCu(PPh₃)₂ was used. Colorless oil, yield: 122 mg (0.456 mmol, 91%). ¹H NMR (250 MHz, CDCl₃): $\delta = 7.61$ (s, 1H), 5.12 (s, 1H), 4.32 (t, 2H, J = 6.75 Hz), 4.085 (q, 2H, J = 7.0 Hz), 2.28 (t, 2H, J = 7.25 Hz), 1.99 (s, 3H), 1.96-1.84 (m, 2H), 1.64-1.52 (m, 2H), 1.17 (t, 3H, J = 7.25 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 172.6$, 170.5, 142.5, 123.4, 60.1, 57.3, 49.6, 33.1, 29.2, 21.5, 20.5, 13.9 ppm. IR(ATR): ν_{max} 2951, 1732, 1460, 1368, 1218, 961, 599 cm⁻¹. MS (EI, 70 eV): *m/z* (%): 269 (7, [M⁺]), 226 (25), 199 (25), 154 (25), 108 (40), 101 (80), 84 (100). HRMS: *m/z* [M + H]⁺ calcd for C₁₂H₂₀N₃O₄: 270.1448; found: 270.1451.

(2R,3R,4S,5R)-2-(acetoxymethyl)-6-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ke) 0.15% C₃H₇COOCu(PPh₃)₂ was used. Colorless oil, yield: 118 mg (0.25 mmol, 83 %). IR(ATR): v_{max} 2943, 2346, 1739, 1434, 1368, 1212, 1098, 1031, 925, 598 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ = 7.84 (s, 1H), 5.90 (dd, 1H, *J* = 2.5 Hz, *J* = 6.5 Hz), 5.41 (dd, 2H, *J* = 2.5 Hz, *J* = 6.5 Hz), 5.24-5.19 (m, 1H), 5.16 (s, 2H), 4.30 (dd, 1H, *J* = 4.75 Hz, *J* = 12.75 Hz), 4.13 (dd, 1H, *J* = 1.5 Hz, *J* = 12.25 Hz), 4.03-3.98 (m, 1H), 2.03 (s, 6H), 2.01 (s, 3H), 1.98 (s, 3H), 1.82 (s, 3H) ppm.

¹³C NMR (62.5 MHz, CDCl₃): δ = 170.6, 170.3, 169.7, 169.2, 168.7, 143.5, 122.1, 85.6, 75.0, 72.5, 70.2, 67.5, 61.4, 57.2, 20.6, 20.5, 20.4, 20.3, 20.0 ppm. HRMS: *m/z* [M + H]⁺ calcd for C₁₉H₂₆N₃O₁₁: 472.1562; found: 472.1563.

((2R,3R,48,5R)-2-(acetoxymethyl)-6-((1-(5-ethoxy-5-oxopentyl)-1H-1,2,3-triazol-4-

yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ig). 0.15% C₃H₇COOCu(PPh₃)₂ was used. White solid, yield: 63 mg (0.113 mmol, 87%). Mp.: 148-150 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 7.47$ (s, 1H), 5.17-4.73 (m, 4H), 4.63 (d, 1H, J = 8.0 Hz), 4.31 (t, 2H, J = 7.0 Hz), 4.193-4.02 (m, 4H), 3.71-3.65 (m, 1H), 2.29 (t, 2H, J = 7.0 Hz), 2.03 (s, 3H), 1.99-1.87 (m, 9H), 1.75-1.56 (m, 2H), 1.18 (t, 3H, J = 7.5 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 172.8$, 170.6, 170.2, 169.4, 169.3, 137.6, 126.1, 99.9, 72.7, 71.9, 71.2, 62.9, 61.8, 60.4, 49.9, 33.3, 29.6, 21.7, 20.7, 20.6, 20.5, 14.2 ppm. IR(ATR): v_{max} 2944, 2346, 1738, 1437, 1368, 1213, 1033, 905, 599 cm⁻¹. HRMS: m/z [M + H]⁺ calcd for C₂₄H₃₆N₃O₁₂: 558.2294; found: 558.2294.

(2R,4R)-1-tert-butyl2-methyl4-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)pyrrolidine-1,2-dicarboxylate (3le).0.15% C₃H₇COOCu(PPh₃)₂ was used. Colorless oil, yield: 58 mg (0.157 mmol, 85%).¹H NMR (250 MHz, CDCl₃): $\delta = 7.70(s, 1H)$, 5.13 (s, 3H), 4.43-4.34 (m, 1H), 4.14-4.07 (m, 1H),3.83-3.76 (m, 1H), 3.65 (s, 3H), 2.94-2.82 (m, 1H), 2.61-2.49 (m, 1H), 2.01 (s, 3H), 1.40-1.36 (m, 9H)ppm.¹³C NMR (62.5 MHz, CDCl₃): $\delta = 171.9$, 170.7, 143.1, 122.5, 81.0, 57.4, 52.3, 51.1, 51.0, 36.1,28.1, 28.0, 20.7 ppm. IR(ATR): v_{max} 2976, 1741, 1697, 1394, 1366, 1220, 1156, 1116, 1029, 769 cm⁻¹.HRMS: m/z [M + H]⁺ calcd for C₁₆H₂₅N₄O₆: 369.1769; found: 369.1774.

Ethyl 5-(4-((4-(3-tert-butoxy-2-(tert-butoxycarbonylamino)-3-oxopropyl)phenoxy)methyl)-1H-1,2,3triazol-1-yl)pentanoate (3ih). 0.05% C₃H₇COOCu(PPh₃)₂ was used. Colorless oil, yield: 71 mg (0.13 mmol, 96 %). ¹H NMR (250 MHz, CDCl₃): $\delta = 7.60$ (s, 1H), 7.09 (d, 2H, J = 8.5 Hz), 6.91 (d, 2H, J = 8.25 Hz), 5.17 (s, 2H), 4.99 (d, 1H, J = 8.25 Hz), 4.37 (t, 2H, J = 7.25 Hz), 4.16 (q, 2H, J = 6.75 Hz), 2.99 (d, 2H, J = 5.75 Hz), 2.34 (t, 2H, J = 6.75 Hz), 2.02-1.9 (m, 2H), 1.75-1.60 (m, 3H), 1.41 (s, 9H), 1.40 (s, 9H), 1.24 (t, 3H, J = 7.0 Hz) ppm. ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 180.4$, 172.8, 170.8, 157.1, 155.0, 130.5, 128.9, 122.5, 114.6, 81.8, 79.5, 62.0, 60.3, 54.9, 49.9, 37.5, 33.3, 29.5, 28.2, 27.9, 21.7, 14.1 ppm. IR(ATR): v_{max} 3369, 2977, 1711, 1510, 1365, 1242, 1150, 1048, 843 cm⁻¹. HRMS: *m/z* [M + H]⁺ calcd for C₂₈H₄₃N₄O₇: 547.3126; found: 547.3122.

NMR Spectra of new triazole products 1-(4-iodobenzyl)-4-phenyl-1H-1,2,3-triazole (3ba).

4-(1-benzyl-1H-1,2,3-triazol-4-yl)butanenitrile (3ad).

(1-benzyl-1H-1,2,3-triazol-4-yl)methyl acetate (3ae).

4-Phenyl-1-((phenylthio)methyl)-1*H*-1,2,3-triazole (3ea).

1-(3-Chloro-2-methylpropyl)-4-phenyl-1*H*-1,2,3-triazole (3ga).

Ethyl-5-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-pentanoate (3ia).

1-(hex-5-enyl)-4-phenyl-1H-1,2,3-triazole (3ja).

Ethyl 5-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)pentanoate (3ie).

(2R,3R,4S,5R)-2-(acetoxymethyl)-6-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-

3,4,5-triyl triacetate (3ke)

((2R,3R,48,5R)-2-(acetoxymethyl)-6-((1-(5-ethoxy-5-oxopentyl)-1H-1,2,3-triazol-4-

yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (3ig).

(2R,4R)-1-tert-butyl 2-methyl 4-(4-(acetoxymethyl)-1H-1,2,3-triazol-1-yl)pyrrolidine-1,2-dicarboxylate (3le).

Ethyl 5-(4-((4-(3-tert-butoxy-2-(tert-butoxycarbonylamino)-3-oxopropyl)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)pentanoate (3ih).

References

- ¹ T. Maki, K. Ishida, J. Org. Chem. 2007, 72, 64276433.
- ² P. Kele, X. Li., M. Link, K. Nagy, A. Herner, K. Lőrincz, Sz. Béni, O. S. Wolfbeis., Org. Biomol. Chem. 2009, DOI: 10.1039/*B907741C
- ³ Sirion, U.; Kim, H. J.; Lee, J. H.; Seo, J. W.; Lee, B. S.;Lee, S. J; Oh, S. J.; Chi, D. Y. *Tetrahedron Lett.* **2007**, *48*,3953
- ⁴ Aldridge, W. S.; Horstein, B. J.; Serron, S.; Dattelbaum, D. L.; Schoonover, J. R.; Meyer, T. J. J. Org. Chem. 2006, 71, 5186
- ⁵ Sa, M. M.; Ramos, M. D.; Fernandes, L. Tetrahedron 2006, 62, 11652
- ⁶ Díez-González, S.; Correa, A.; Cavallo, L.; Nolan, S. P. Chem. Eur. J. 2006, 12, 7558.
- ⁷ Xiao, J.; Xu, J.; Cui, S.; Liu, H.; Wang, S.; Li, Y. Org. Lett. 2008, 10, 645.
- ⁸ (a) Ritschel, J.; Sasse, F.; Maier, M. E. *Eur. J. Org. Chem.* **2007**, 78. (b) Barret, I. C.; Kerr, M. A. *Synlett* **2000**, *11*, 1673. (c) Hassner, A.; Stern, M. Angew. Chem. **1986**, *98*, 479.
- ⁹ Campbell-Verduyn, L.; Elsinga, P. H.; Mirfeizi, L.; Dierckx, R. A.; Feringa, B. Org. Biomol. Chem. 2008, 6(19), 3461-3463.
- ¹⁰ Khoukhi, N.; Vaultier, M.; Carrie, R. Tetrahedron 1987, 43(8), 1811-22.
- ¹¹ Yuan, H.; He, R.; Wan, B.; Wang, Y.; Pauli, G. F.; Franzblau, S. G.; Kozikowski, A. P. Bioorganic & Medicinal Chemistry Letters 2008, 18(19), 5311-5315.
- ¹² Edwards, D. A.; Richards, R. J. Chem. Soc. Dalton Trans. 1973, 2463.
- ¹³ Edwards, D. A.; Richards, R. J. Chem. Soc. Dalton Trans. 1975, 637.
- ¹⁴ Behrens, H.; Kley, P. D. C. Organische Mikrochemische Analyse 1922, 319.
- ¹⁵ (a)Park, I. S.; Kwon, M. S.; Kim, Y.; Lee, J. S.; Park, Org. Lett. **2008**, 10, 497. (b) Li, P.; Wang, L. Lett. Org. Chem. **2007**, 4, 23
- ¹⁶ Sharghi, H.; Khalifeh, R.; Doroodmand, M. M., Advanced Synthesis & Catalysis 2009, 351(1+2), 207-218.
- ¹⁷ Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. **2004**, *6*(23), 4223-4225.
- ¹⁸ Richardson, Ch.; Fitchett, Ch. M.; Keene, F. R.; Steel, P. J. Dalton Trans. 2008, 19, 2534
- ¹⁹ (a)Wang, Z.; Qin, H. Chem. Commun. **2003**, 2450. (b)
- ²⁰ Hanelt, S.; Liebscher, J. Synlett **2008**, 7, 1058.
- ²¹ Zhao, Y.; Yan, Z.; Liang, Y. Tetrahedron Lett. 2006, 47, 1545