## **Electronic Supplementary Information**

# Photoinduced Electron Transfer in Tris(2,2'bipyridine)ruthenium(II)-Viologen Dyads with Peptide Backbones Leading to Long-Lived Charge Separation and Hydrogen Evolution

Makoto Ogawa,<sup>a</sup> Bijitha Balan,<sup>a</sup> Gopalakrishnan Ajayakumar,<sup>a</sup> Shigeyuki Masaoka,<sup>a,b</sup> Heinz-Bernhard Kraatz,<sup>c</sup> Masayasu Muramatsu,<sup>d</sup> Syoji Ito,<sup>d</sup> Yutaka Nagasawa,<sup>d</sup> Hiroshi Miyasaka,<sup>d</sup> and Ken Sakai<sup>\*a</sup>

 <sup>a</sup>Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashiku, Fukuoka 812-8581, Japan. <sup>b</sup>PRESTO, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan. <sup>c</sup>Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7.
 <sup>d</sup>Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.



Fig. S1 HPLC traces of (a)  $RuMV2(PF_6)_6 \cdot 2H_2O$ , (b)  $RuMV4(PF_6)_{10} \cdot H_2O$ , and (c)  $RuMV6(PF_6)_{14} \cdot H_2O$ . The HPLC purification together with the purity confirmation shown in these figures was performed on a C18 column using a water/acetonitrile mixture as the eluent. The linear gradient changed from 5 to 95% in the acetonitrile content over 40 min at a flow rate of 0.1 mL/min.



**Fig. S2** Emission decay profiles of (a) **RuMV2**( $PF_6$ )<sub>6</sub>·2H<sub>2</sub>O and (b) **RuMV6**( $PF_6$ )<sub>14</sub>·H<sub>2</sub>O in water under a deaerated condition, at room temperature obtained by the time correlated single photon counting (TC-SPC) methods. The excitation source was a double-frequency Nd:YAG laser (532 nm). The emission was monitored at 610 nm.



**Fig. S3** Cyclic voltammograms of (a) **RuMV2**(PF<sub>6</sub>)<sub>6</sub>·2H<sub>2</sub>O, (b) **RuMV4**(PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O, (c) **RuMV6**(PF<sub>6</sub>)<sub>14</sub>·H<sub>2</sub>O, and (d) **RuMe2**(PF<sub>6</sub>)<sub>2</sub>·H<sub>2</sub>O (1 mM) in an acetonitrile solution containing 0.1 M TBAP (TBAP = tetra(n-butyl)ammonium perchlorate) at room temperature under Ar atmosphere. Each voltammogram was recorded at a sweep rate of 50 mVs<sup>-1</sup>.



**Fig. S4** Differential pulse voltammograms of (a) **RuMV2**(PF<sub>6</sub>)<sub>6</sub>·2H<sub>2</sub>O, (b) **RuMV4**(PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O, (c) **RuMV6**(PF<sub>6</sub>)<sub>14</sub>·H<sub>2</sub>O, and (d) **RuMe2**(PF<sub>6</sub>)<sub>2</sub>·H<sub>2</sub>O (1 mM) in an acetonitrile solution containing 0.1 M TBAP (TBAP = tetra(n-butyl)ammonium perchlorate) at room temperature under Ar atmosphere. Each voltammogram was recorded using a glassy carbon disk as the working electrode, at a sweep rate of 50 mVs<sup>-1</sup>, a potential amplitude of 50 mV, and a step height of 4 mV.



**Fig. S5** (a) Nanosecond transient absorption spectrum of **RuMV2**( $PF_6$ )<sub>6</sub>·2H<sub>2</sub>O in water followed by excitation using a 532-nm laser source (10 ns after the laser pulse). Transient traces at (b) 415 nm and (c) 610 nm corresponding to the behavior of  $MV^{+\bullet}$  are also shown.



**Fig. S6** (a) Nanosecond transient absorption spectrum of **RuMV6**( $PF_6$ )<sub>14</sub>·H<sub>2</sub>O in water followed by excitation using a 532-nm laser source (10 ns after the laser pulse). Transient traces at (b) 415 nm and (c) 610 nm corresponding to the behavior of  $MV^{+\bullet}$  are also shown.

#### **Conductivity Measurements**

The molar conductivities of aqueous solutions of the **RuMVn** complexes were measured as a function of the total complex concentration. Measurements were carried out using a TOA CM-20S conductometer with a CG-511B type conductivity cell having a cell constant of 0.969 cm<sup>-1</sup>. The cell constant was determined using a standard solution containing 1.0 mM KCl. The values higher than ca. 5 mS/m were adopted, while those below this threshold were abandoned. The conductivity data were measured for all the  $PF_6^-$  salts of the **RuMV2**-RuMV6 complexes, together with the chloride salt of the RuMV4 complex, and are summarized in Tables S1-S4. To ascertain the validity of our experimental techniques and also to obtain rough estimates for the molar conductivities of  $Ru(bpy)_3^{2+}$  and  $MV^{2+}$  under the present experimental conditions, the measurements were also carried out for KCl, [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub>·6H<sub>2</sub>O, and [MV]Cl<sub>2</sub>·3H<sub>2</sub>O. The molar conductivity of [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> varied in the range  $\frac{1}{2} \{A([Ru(bpy)_3]Cl_2)\} = 121 \sim 134 \text{ Scm}^2 \text{mol}^{-1}$  when the concentration was changed from 1.0 to 0.25 mM, while that of [MV]Cl<sub>2</sub> varied in the range  $\frac{1}{2} \{\Lambda(MVCl_2)\} = 160 \sim 161$ Scm<sup>2</sup>mol<sup>-1</sup> upon changing the concentration from 1.0 to 0.25 mM. Since the molar conductivity of a salt is given by the sum of the molar conductivities of the cationic and anionic species (e.g.,  $\Lambda(KCI) = \lambda(K^+) + \lambda(CI^-)$ ), the equivalent molar conductivities of  $[Ru(bpy)_3]^{2+}$  and  $MV^{2+}$  are estimated as  $\frac{1}{2} \{\lambda (Ru(bpy)_3^{2+})\} = 45 \sim 58 \text{ Scm}^2 \text{mol}^{-1}$  and  $\frac{1}{2} \{\lambda(MV^{2+})\} = 85 \text{ Scm}^2 \text{mol}^{-1}$ , respectively, where the molar conductivity of Cl<sup>-</sup> was taken from the literature  $(\lambda(Cl^{-}) = 76.4 \text{ Scm}^2 \text{mol}^{-1})^1$  and was used in these estimations. The former values for Ru(bpy)<sub>3</sub><sup>2+</sup> are roughly consistent with its literature value  $\frac{1}{2} \{\lambda (Ru(bpy)_3^{2+})\} = 36.9$ Scm<sup>2</sup>mol<sup>-1,2</sup> It is rather important to note here that the value estimated for  $\frac{1}{2} \{\lambda(MV^{2+})\}$  is quite consistent with the value of  $\frac{1}{(z-m)} \{ \lambda(\mathbf{RuMVn}(\mathbf{PF}_6)_m^{(z-m)+}) \}$ , which was estimated as 88 Scm<sup>2</sup>mol<sup>-1</sup> in the following simulation studies.

From the mass balance with regard to the **RuMVn** complex, the total concentration of the **RuMVn**(X)<sub>m</sub><sup>(z-m)+</sup> species (m = 0, 1, 2, ..., z) is given by equation (S-1),

$$[A]_{t} = [A^{z^{+}}] + [AX^{(z-1)^{+}}] + [AX_{2}^{(z-2)^{+}}] + \cdots$$

$$\cdots + [AX_{z-1}^{+}] + [AX_{z}]$$
(S-1)

where A denotes each **RuMVn** cation, and  $[A]_t$  denotes the total concentration of  $AX_m$  dissolved in each experiment (abbreviated as  $C_t$ ). By use of the total stability constants ( $\beta_1$ ,  $\beta_2$ , ...,  $\beta_z$ ), equation (S-1) can be transformed into the following equation,

$$C_{t} = [A^{z^{+}}](1 + \beta_{1}x + \beta_{2}x^{2} + \cdots + \beta_{z}x^{z})$$
(S-2)

where x denotes the concentration of the counter anion, i.e.  $[X^-]$ , in solution ( $X^- = PF_6^-$ ,  $CI^-$ , etc.). On the other hand, the following equation can also be derived based on the mass balance with regard to the counter anion involved in the system.

$$z[A]_{t} = [X^{-}] + [AX^{(z-1)^{+}}] + 2[AX_{2}^{(z-2)^{+}}] + \cdots \cdots$$

$$\cdots + (z-1)[AX_{z-1}^{+}] + z[AX_{z}]$$
(S-3)

This can be similarly transformed into the following equation.

$$zC_{t} = x + \beta_{1}x[A^{z^{+}}] + 2\beta_{2}x^{2}[A^{z^{+}}] + 3\beta_{3}x^{3}[A^{z^{+}}] + \cdots$$

$$\cdots + (z-1)\beta_{z-1}x^{z-1}[A^{z^{+}}] + z\beta_{z}x^{z}[A^{z^{+}}]$$
(S-4)

From equations (S-2) and (S-4), the following equation (S-5) is given.

$$\frac{C_{t}}{zC_{t}-x} = \frac{1+\beta_{1}x+\beta_{2}x^{2}+\cdots+\beta_{z}x^{z}}{\beta_{1}x+2\beta_{2}x^{2}+3\beta_{3}x^{3}+\cdots+(z-1)\beta_{z-1}x^{z-1}+z\beta_{z}x^{z}}$$
(S-5)

The apparent molar conductivity is given by the following equation,

$$\Lambda = \frac{1}{C_{t}} \{ (\lambda(X^{-}) x + \lambda(A^{z^{+}})[A^{z^{+}}] + \lambda(AX^{(z-1)^{+}})[AX^{(z-1)^{+}}] + \cdots \\ \cdots + \lambda(AX_{z-1}^{-1})[AX_{z-1}^{-1}]) \}$$
(S-6)

where  $\Lambda$  is the apparent molar conductivity of each salt,  $\lambda(X^{-})$  denotes the molar conductivity of the counter anion (X<sup>-</sup> = PF<sub>6</sub><sup>-</sup> or Cl<sup>-</sup>), and  $\lambda(AX_m^{(z-m)^+})$  corresponds to that of an  $AX_m^{(z-m)^+}$  cation (m = 0, 1, 2, ..., z-1).

For simplicity, we further decided to suppose that all the cationic species involving each **RuMVn** cation have the same mobility in aqueous media. Thus, it is supposed that the following equations are satisfied.

$$\lambda(A^{z^{+}}) \stackrel{:}{=} z \lambda(AX_{z-1}^{+})$$

$$\lambda(AX^{(z-1)^{+}}) \stackrel{:}{=} (z-1)\lambda(AX_{z-1}^{+})$$

$$\lambda(AX_{2}^{(z-2)^{+}}) \stackrel{:}{=} (z-2)\lambda(AX_{z-1}^{+})$$

$$\vdots$$

$$\lambda(AX_{z-2}^{2^{+}}) \stackrel{:}{=} 2 \lambda(AX_{z-1}^{+})$$

$$(S-7)$$

By applying (S-7) to (S-6), the apparent molar conductivity can be expressed by the following equations.

$$\begin{split} \Lambda &= \frac{1}{C_{t}} \left\{ (\lambda(X^{-}) x + z\lambda(AX_{z-1}^{+})[A^{z+}] + (z-1)\lambda(AX_{z-1}^{+})[AX^{(z-1)+}] + \cdots \\ & \cdots + 2\lambda(AX_{z-1}^{+})[AX_{z-2}^{2+}] + \lambda(AX_{z-1}^{+})[AX_{z-1}^{+}]) \right\} \\ &= \frac{1}{C_{t}} \left\{ \lambda(X^{-}) x + \lambda(AX_{z-1}^{+}) (z[A^{z+}] + (z-1)[AX^{(z-1)+}] + \cdots \\ & \cdots + 2[AX_{z-2}^{2+}] + [AX_{z-1}^{+}]) \right\} \\ &= \frac{1}{C_{t}} \left\{ \lambda(X^{-}) x + \lambda(AX_{z-1}^{+})[A^{z+}](z + (z-1)\beta_{1}x + \cdots \\ & \cdots + 2\beta_{z-2}x^{z-2} + \beta_{z-1}x^{z-1}) \right\} \end{split}$$
(S-8)

Furthermore,  $[A^{z^+}]$  is given by the following equation.

$$[A^{z^{+}}] = \frac{C_{t}}{1 + \beta_{1}x + \beta_{2}x^{2} + \cdots + \beta_{z}x^{z}}$$
(S-9)

By supposing an appropriate set of total stability constants, the concentration of  $X^-$  (i.e., x) can be calculated at each total concentration of the **RuMVn** complex, C<sub>t</sub>. By use of our original simulation program developed for this purpose, we could successfully regenerate the observed molar conductivity data. In the simulation, we adopted the following scheme to define an appropriate set of stepwise formation constants  $(K_1, K_2, K_3, ..., K_z)$  for each system.

$$\frac{K_2}{K_1} = \frac{K_3}{K_2} = \frac{K_4}{K_3} = \frac{K_5}{K_4} = \cdots = \frac{K_z}{K_{z-1}} = \alpha$$
(S-10)

This is a reasonable scheme considering the fact that the major contribution to the free energy change in each step correlates with the coulombic attraction and is therefore considered proportional to the number of positive charge (z) of the cation which forms an ion pair with  $X^{-}$ . The stepwise formation constants together with the total stability constants used to simulate the observed data are summarized in Table S5.

The molar conductivities of  $PF_6^-$  and  $Cl^-$  (59.2  $Scm^2mol^{-1}$  and 76.4  $Scm^2mol^{-1}$ , respectively) were taken from the literatures<sup>1,3</sup> and were adopted in all the simulation studies. The equivalent molar conductivities ( $\lambda_0/z_i$ ,  $\lambda_0$  is the molar conductivity of each cationic species and the  $z_i$  denotes the number of positive charge of the cation) of all the  $AX_m^{(z-m)+}$  cations were fixed at  $\lambda(AX_m^{(z-m)+})/(z-m) = 88 Scm^2mol^{-1}$ , since this value well reproduced all the observed data and also found consistent with  $1/2{\lambda(MV^{2+})} = 85 Scm^2mol^{-1}$ . The calculated lines given from these simulation experiments are all given in Fig. 7. The numerical data obtained in these simulation experiments are all listed in Table S6. By adopting the stability constants summarized in Table S5, the relative abundances of all the  $AX_m^{(z-m)+}$  species in aqueous media can be calculated as shown in Figs. S7-S10. Finally, the relative abundances of all the chemical species in solution under the reported spectroscopic and photolysis conditions are given in Tables S7-S10.

The simulation program (including the source codes), developed by using the Delphi 5 package under the Windows platform, is also supplied as supporting information (a single zip file: conductivity\_simulation.zip). It can be also downloaded at the author's website: <a href="http://www.scc.kyushu-u.ac.jp/Sakutai/softwares/softwares.eng.html">http://www.scc.kyushu-u.ac.jp/Sakutai/softwares/softwares.eng.html</a>

| $C^{1/2} (\mathrm{mM}^{1/2})$ | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) |
|-------------------------------|-------------------------------------------------|
| 0.02388                       | 543.9                                           |
| 0.01639                       | 566.1                                           |
| 0.01245                       | 633.6                                           |
| 0.01000                       | 687.0                                           |

**Table S1** The observed molar conductivity of  $\mathbf{RuMV2}(\mathbf{PF}_6)_6 \cdot 2\mathbf{H}_2\mathbf{O}$  in water vs. the square root of the total concentration.

**Table S2** The observed molar conductivity of  $RuMV4(PF_6)_{10}$ ·H<sub>2</sub>O in water vs. the square root of the total concentration.

| $C^{1/2} (\mathrm{mM}^{1/2})$ | $\Lambda (\text{Scm}^2 \text{mol}^{-1})$ |
|-------------------------------|------------------------------------------|
| 0.02236                       | 688.0                                    |
| 0.01583                       | 730.5                                    |
| 0.01217                       | 824.3                                    |
| 0.009950                      | 899.0                                    |
| 0.006964                      | 1052                                     |

| $C^{1/2}$ (mM <sup>1/2</sup> ) | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) |
|--------------------------------|-------------------------------------------------|
| 0.02276                        | 1004                                            |
| 0.01972                        | 997.4                                           |
| 0.01577                        | 1074                                            |
| 0.01123                        | 1198                                            |
| 0.008683                       | 1283                                            |
| 0.007036                       | 1400                                            |

**Table S3** The observed molar conductivity of  $RuMV4(Cl)_{10}$  in water vs. the square root of the total concentration.

**Table S4** The observed molar conductivity of  $\mathbf{RuMV6}(\mathbf{PF}_6)_{14}$ ·H<sub>2</sub>O in water vs. the square root of the total concentration.

| $C^{1/2}$ (mM <sup>1/2</sup> ) | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) |
|--------------------------------|-------------------------------------------------|
| 0.02034                        | 1027                                            |
| 0.01417                        | 1121                                            |
| 0.01093                        | 1244                                            |
| 0.008906                       | 1398                                            |
| 0.006244                       | 1570                                            |

| Params                                           | <b>RuMV2</b> (PF <sub>6</sub> ) <sub>6</sub> ·2H <sub>2</sub> O | <b>RuMV4</b> (PF <sub>6</sub> ) <sub>10</sub> ·H <sub>2</sub> O | $\mathbf{RuMV6}(\mathrm{PF}_6)_{14} \cdot \mathrm{H}_2\mathrm{O}$ | RuMV4(Cl) <sub>10</sub>                         |
|--------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------|
| α                                                | 0.20                                                            | 0.50                                                            | 0.56                                                              | 0.43                                            |
| $egin{array}{c} K_1 \ (eta_1) \end{array}$       | $1.0 \times 10^4$<br>(1.0 × 10 <sup>4</sup> )                   | $1.5 \times 10^4$<br>(1.5 × 10 <sup>4</sup> )                   | $1.5 \times 10^4$<br>(1.5 × 10 <sup>4</sup> )                     | $6.4 \times 10^{3}$<br>(6.4 × 10 <sup>3</sup> ) |
| $egin{array}{c} K_2 \ (eta_2) \end{array}$       | 2000<br>(2.000 × 10 <sup>7</sup> )                              | 7500<br>(1.125 × 10 <sup>8</sup> )                              | 8400<br>(1.26 × 10 <sup>8</sup> )                                 | 2752<br>(1.76 × 10 <sup>8</sup> )               |
| $egin{array}{c} K_3 \ (eta_3) \end{array}$       | 400.0<br>(8.000 × 10 <sup>9</sup> )                             | $3750 (4.219 \times 10^{11})$                                   | 4704<br>(5.93 × 10 <sup>11</sup> )                                | $\frac{1183}{(2.08\times10^{10})}$              |
| $egin{array}{c} K_4 \ (eta_4) \end{array}$       | $\frac{80.00}{(6.400 \times 10^{11})}$                          | 1875 (7.910 × 10 <sup>14</sup> )                                | 2634<br>(1.56 × 10 <sup>15</sup> )                                | $508.8 \\ (1.06 \times 10^{13})$                |
| $egin{array}{c} K_5 \ (eta_5) \end{array}$       | $\frac{16.00}{(1.024 \times 10^{13})}$                          | 937.5 $(7.416 \times 10^{17})$                                  | 1475<br>(2.30 × 10 <sup>18</sup> )                                | 218.8<br>(2.32 × 10 <sup>15</sup> )             |
| $egin{array}{c} K_6 \ (eta_6) \end{array}$       | $3.200 \\ (3.277 \times 10^{13})$                               | $468.8 (3.476 \times 10^{20})$                                  | $826.1 \\ (.90 \times 10^{21})$                                   | 94.09 $(2.18 \times 10^{17})$                   |
| $egin{array}{c} K_7\ (eta_7) \end{array}$        |                                                                 | $234.4 (8.147 \times 10^{22})$                                  | $462.6 \\ (8.80 \times 10^{23})$                                  | $40.46 \\ (8.83 \times 10^{18})$                |
| $egin{array}{c} K_8 \ (eta_8) \end{array}$       |                                                                 | $117.2 (9.548 \times 10^{24})$                                  | 259.1<br>(2.28 × 10 <sup>26</sup> )                               | 17.40<br>$(1.54 \times 10^{20})$                |
| $egin{array}{c} K_9 \ (eta_9) \end{array}$       |                                                                 | $58.59 (5.594 \times 10^{26})$                                  | $\frac{145.1}{(3.31 \times 10^{28})}$                             | $7.480 \\ (1.15 \times 10^{21})$                |
| $egin{array}{c} K_{10} \ (eta_{10}) \end{array}$ |                                                                 | $29.30 \\ (1.639 \times 10^{28})$                               | 81.25<br>(2.69 × 10 <sup>30</sup> )                               | $3.217 (3.70 \times 10^{21})$                   |
| $K_{11} (\beta_{11})$                            |                                                                 |                                                                 | $45.50 \\ (1.22 \times 10^{32})$                                  |                                                 |
| $K_{12} \ (eta_{12})$                            |                                                                 |                                                                 | 25.48<br>(3.12 × 10 <sup>33</sup> )                               |                                                 |
| $K_{13}$<br>( $\beta_{13}$ )                     |                                                                 |                                                                 | $14.27 (4.44 \times 10^{34})$                                     |                                                 |
| $K_{14} \ (eta_{14})$                            |                                                                 |                                                                 | $7.990 (3.55 \times 10^{35})$                                     |                                                 |

**Table S5** The  $\alpha$  values for eq. (S-10), the stepwise formation constants, and the total stability constants used to simulate the conductivity data.

| RuMV2(P                           | $F_6)_6 \cdot 2H_2O$ | RuMV4                             | $(PF_6)_{10} \cdot H_2O$                        | RuMV                           | $(PF_6)_{14}$ ·H <sub>2</sub> O                 | RuMV                              | 4(Cl) <sub>10</sub>                               |
|-----------------------------------|----------------------|-----------------------------------|-------------------------------------------------|--------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------------------|
| $C^{1/2}$ (mM <sup>1/2</sup> ) (S | $\Lambda$            | $C^{1/2}$<br>(mM <sup>1/2</sup> ) | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) | $C^{1/2}$ (mM <sup>1/2</sup> ) | $\Lambda$ (Scm <sup>2</sup> mol <sup>-1</sup> ) | $C^{1/2}$ (mM <sup>1/2</sup> ) (S | $\Lambda$<br>Scm <sup>2</sup> mol <sup>-1</sup> ) |
| 0.002130                          | 848.6                | 0.001995                          | 1390                                            | 0.001815                       | 1959                                            | 0.002031                          | 1599                                              |
| 0.003012                          | 824.1                | 0.002821                          | 1325                                            | 0.002567                       | 1875                                            | 0.002872                          | 1564                                              |
| 0.003689                          | 804.7                | 0.003456                          | 1274                                            | 0.003144                       | 1809                                            | 0.003517                          | 1533                                              |
| 0.004260                          | 788.9                | 0.003990                          | 1232                                            | 0.003630                       | 1755                                            | 0.004061                          | 1505                                              |
| 0.004763                          | 775.4                | 0.004461                          | 1197                                            | 0.004058                       | 1710                                            | 0.004541                          | 1481                                              |
| 0.005218                          | 763.7                | 0.004887                          | 1168                                            | 0.004446                       | 1672                                            | 0.004974                          | 1458                                              |
| 0.005636                          | 753.4                | 0.005278                          | 1142                                            | 0.004802                       | 1640                                            | 0.005373                          | 1439                                              |
| 0.006025                          | 744.2                | 0.005643                          | 1119                                            | 0.005133                       | 1611                                            | 0.005743                          | 1420                                              |
| 0.006390                          | 735.9                | 0.005985                          | 1099                                            | 0.005445                       | 1586                                            | 0.006092                          | 1404                                              |
| 0.006736                          | 728.3                | 0.006309                          | 1081                                            | 0.005739                       | 1563                                            | 0.006421                          | 1388                                              |
| 0.007065                          | 721.4                | 0.006617                          | 1064                                            | 0.006019                       | 1543                                            | 0.006735                          | 1374                                              |
| 0.007379                          | 715.0                | 0.006911                          | 1049                                            | 0.006287                       | 1524                                            | 0.007034                          | 1361                                              |
| 0.007680                          | 709.0                | 0.007193                          | 1035                                            | 0.006544                       | 1506                                            | 0.007322                          | 1349                                              |
| 0.007970                          | 703.4                | 0.007465                          | 1023                                            | 0.006791                       | 1490                                            | 0.007598                          | 1337                                              |
| 0.008250                          | 698.2                | 0.007727                          | 1011                                            | 0.007029                       | 1476                                            | 0.007865                          | 1326                                              |
| 0.008520                          | 693.3                | 0.007980                          | 999.3                                           | 0.007260                       | 1462                                            | 0.008122                          | 1316                                              |
| 0.008783                          | 688.7                | 0.008226                          | 988.8                                           | 0.007483                       | 1449                                            | 0.008372                          | 1306                                              |
| 0.009037                          | 684.3                | 0.008464                          | 978.8                                           | 0.007700                       | 1436                                            | 0.008615                          | 1297                                              |
|                                   |                      |                                   |                                                 |                                |                                                 |                                   | (Contd.)                                          |

**Table S6** The numerical data obtained by the simulation experiments.

| 1288     | 0.008851 | 1425 | 0.007911 | 969.5 | 0.008696 | 680.1 | 0.009285 |
|----------|----------|------|----------|-------|----------|-------|----------|
| 1280     | 0.009081 | 1414 | 0.008117 | 960.6 | 0.008922 | 676.2 | 0.009526 |
| 1272     | 0.009305 | 1403 | 0.008317 | 952.1 | 0.009142 | 672.4 | 0.009761 |
| 1265     | 0.009524 | 1393 | 0.008513 | 944.1 | 0.009358 | 668.8 | 0.009991 |
| 1257     | 0.009739 | 1384 | 0.008704 | 936.4 | 0.009568 | 665.3 | 0.01022  |
| 1250     | 0.009948 | 1375 | 0.008891 | 929.1 | 0.009774 | 662.0 | 0.01044  |
| 1244     | 0.01015  | 1366 | 0.009075 | 922.1 | 0.009975 | 658.8 | 0.01065  |
| 1237     | 0.01035  | 1357 | 0.009254 | 915.3 | 0.01017  | 655.7 | 0.01086  |
| 1231     | 0.01055  | 1349 | 0.009431 | 908.8 | 0.01037  | 652.8 | 0.01107  |
| 1225     | 0.01075  | 1342 | 0.009604 | 902.6 | 0.01056  | 649.9 | 0.01127  |
| 1219     | 0.01094  | 1334 | 0.009774 | 896.6 | 0.01074  | 647.2 | 0.01147  |
| 1214     | 0.01112  | 1327 | 0.009941 | 890.8 | 0.01093  | 644.5 | 0.01167  |
| 1208     | 0.01131  | 1320 | 0.01011  | 885.2 | 0.01111  | 641.9 | 0.01186  |
| 1203     | 0.01149  | 1313 | 0.01027  | 879.7 | 0.01129  | 639.4 | 0.01205  |
| 1198     | 0.01167  | 1307 | 0.01043  | 874.5 | 0.01146  | 637.0 | 0.01224  |
| 1193     | 0.01184  | 1300 | 0.01058  | 869.4 | 0.01163  | 634.7 | 0.01242  |
| 1188     | 0.01201  | 1294 | 0.01074  | 864.5 | 0.01180  | 632.4 | 0.01260  |
| 1183     | 0.01218  | 1288 | 0.01089  | 859.7 | 0.01197  | 630.2 | 0.01278  |
| 1179     | 0.01235  | 1282 | 0.01104  | 855.0 | 0.01214  | 628.0 | 0.01296  |
| 1174     | 0.01252  | 1277 | 0.01119  | 850.5 | 0.01230  | 625.9 | 0.01313  |
| 1170     | 0.01268  | 1271 | 0.01133  | 846.1 | 0.01246  | 623.9 | 0.01330  |
| 1166     | 0.01284  | 1266 | 0.01148  | 841.2 | 0.01262  | 621.9 | 0.01347  |
| (Contd.) |          |      |          |       |          |       |          |
|          |          |      |          |       |          |       |          |

\_\_\_\_

| 0.01364 | 619.9 | 0.01277 | 837.6 | 0.01162 | 1261 | 0.01300 | 1162     |
|---------|-------|---------|-------|---------|------|---------|----------|
| 0.01381 | 618.0 | 0.01293 | 833.5 | 0.01176 | 1256 | 0.01316 | 1158     |
| 0.01397 | 616.2 | 0.01308 | 829.6 | 0.01190 | 1251 | 0.01332 | 1154     |
| 0.01413 | 614.4 | 0.01323 | 825.7 | 0.01204 | 1246 | 0.01347 | 1150     |
| 0.01429 | 612.6 | 0.01338 | 821.9 | 0.01218 | 1241 | 0.01362 | 1147     |
| 0.01445 | 610.9 | 0.01353 | 818.2 | 0.01231 | 1236 | 0.01377 | 1143     |
| 0.01460 | 609.2 | 0.01368 | 814.6 | 0.01244 | 1232 | 0.01392 | 1139     |
| 0.01476 | 607.5 | 0.01382 | 811.0 | 0.01257 | 1228 | 0.01407 | 1136     |
| 0.01491 | 605.9 | 0.01397 | 807.6 | 0.01270 | 1223 | 0.01421 | 1132     |
| 0.01506 | 604.3 | 0.01411 | 804.2 | 0.01283 | 1219 | 0.01436 | 1129     |
| 0.01521 | 602.7 | 0.01425 | 800.8 | 0.01296 | 1215 | 0.01450 | 1126     |
| 0.01536 | 601.2 | 0.01439 | 797.6 | 0.01309 | 1211 | 0.01464 | 1123     |
| 0.01551 | 599.7 | 0.01452 | 794.4 | 0.01321 | 1207 | 0.01478 | 1119     |
| 0.01565 | 598.2 | 0.01466 | 791.3 | 0.01334 | 1203 | 0.01492 | 1116     |
| 0.01580 | 596.8 | 0.01480 | 788.2 | 0.01346 | 1199 | 0.01506 | 1113     |
| 0.01594 | 595.4 | 0.01493 | 785.2 | 0.01358 | 1195 | 0.01520 | 1110     |
| 0.01608 | 594.0 | 0.01506 | 782.2 | 0.01370 | 1192 | 0.01533 | 1107     |
| 0.01622 | 592.6 | 0.01519 | 779.3 | 0.01382 | 1188 | 0.01547 | 1105     |
| 0.01636 | 591.3 | 0.01532 | 776.5 | 0.01394 | 1184 | 0.01560 | 1102     |
| 0.01650 | 589.9 | 0.01545 | 773.7 | 0.01406 | 1181 | 0.01573 | 1099     |
| 0.01664 | 588.6 | 0.01558 | 770.9 | 0.01418 | 1177 | 0.01586 | 1096     |
| 0.01677 | 587.4 | 0.01571 | 768.2 | 0.01429 | 1174 | 0.01599 | 1094     |
|         |       |         |       |         |      |         | (Contd.) |

| 0.01691 | 586.1 | 0.01584 | 765.6 | 0.01441 | 1171 | 0.01612 | 1091     |
|---------|-------|---------|-------|---------|------|---------|----------|
| 0.01704 | 584.9 | 0.01596 | 763.0 | 0.01452 | 1167 | 0.01625 | 1088     |
| 0.01717 | 583.6 | 0.01608 | 760.4 | 0.01463 | 1164 | 0.01637 | 1086     |
| 0.01731 | 582.4 | 0.01621 | 757.9 | 0.01474 | 1161 | 0.01650 | 1083     |
| 0.01744 | 581.3 | 0.01633 | 755.4 | 0.01486 | 1158 | 0.01662 | 1081     |
| 0.01757 | 580.1 | 0.01645 | 752.9 | 0.01497 | 1155 | 0.01675 | 1078     |
| 0.01769 | 578.9 | 0.01657 | 750.5 | 0.01508 | 1152 | 0.01687 | 1076     |
| 0.01782 | 577.8 | 0.01669 | 748.1 | 0.01519 | 1149 | 0.01699 | 1074     |
| 0.01795 | 576.7 | 0.01681 | 745.8 | 0.01529 | 1146 | 0.01711 | 1071     |
| 0.01807 | 575.6 | 0.01693 | 743.5 | 0.01540 | 1143 | 0.01723 | 1069     |
| 0.01820 | 574.5 | 0.01705 | 741.2 | 0.01551 | 1140 | 0.01735 | 1067     |
| 0.01832 | 573.4 | 0.01716 | 739.0 | 0.01561 | 1137 | 0.01747 | 1064     |
| 0.01845 | 572.4 | 0.01728 | 736.8 | 0.01572 | 1134 | 0.01759 | 1062     |
| 0.01857 | 571.4 | 0.01739 | 734.6 | 0.01582 | 1132 | 0.01770 | 1060     |
| 0.01869 | 570.3 | 0.01751 | 732.4 | 0.01593 | 1129 | 0.01782 | 1058     |
| 0.01881 | 569.3 | 0.01762 | 730.3 | 0.01603 | 1126 | 0.01793 | 1056     |
| 0.01893 | 568.3 | 0.01773 | 728.2 | 0.01613 | 1124 | 0.01805 | 1054     |
| 0.01905 | 567.3 | 0.01784 | 726.1 | 0.01623 | 1121 | 0.01816 | 1052     |
| 0.01917 | 566.4 | 0.01796 | 724.1 | 0.01633 | 1118 | 0.01828 | 1050     |
| 0.01929 | 565.4 | 0.01807 | 722.1 | 0.01644 | 1116 | 0.01839 | 1048     |
| 0.01941 | 564.4 | 0.01818 | 720.1 | 0.01654 | 1113 | 0.01850 | 1046     |
| 0.01952 | 563.5 | 0.01829 | 718.1 | 0.01663 | 1111 | 0.01861 | 1044     |
|         |       |         |       |         |      |         | (Contd.) |

| 0.01964 | 562.6 | 0.01839 | 716.2 | 0.01673 | 1109 | 0.01872 | 1042     |
|---------|-------|---------|-------|---------|------|---------|----------|
| 0.01975 | 561.7 | 0.01850 | 714.3 | 0.01683 | 1106 | 0.01883 | 1040     |
| 0.01987 | 560.7 | 0.01861 | 712.4 | 0.01693 | 1104 | 0.01894 | 1038     |
| 0.01998 | 559.9 | 0.01872 | 710.5 | 0.01703 | 1101 | 0.01905 | 1036     |
| 0.02010 | 559.0 | 0.01882 | 708.7 | 0.01712 | 1099 | 0.01916 | 1034     |
| 0.02021 | 558.1 | 0.01893 | 706.9 | 0.01722 | 1097 | 0.01926 | 1032     |
| 0.02032 | 557.2 | 0.01903 | 705.1 | 0.01731 | 1094 | 0.01937 | 1031     |
| 0.02043 | 556.4 | 0.01914 | 703.3 | 0.01741 | 1092 | 0.01948 | 1029     |
| 0.02054 | 555.5 | 0.01924 | 701.5 | 0.01750 | 1090 | 0.01958 | 1027     |
| 0.02065 | 554.7 | 0.01934 | 699.8 | 0.01760 | 1088 | 0.01969 | 1025     |
| 0.02076 | 553.9 | 0.01945 | 698.1 | 0.01769 | 1086 | 0.01979 | 1024     |
| 0.02087 | 553.0 | 0.01955 | 696.4 | 0.01778 | 1083 | 0.01990 | 1022     |
| 0.02098 | 552.2 | 0.01965 | 694.7 | 0.01788 | 1081 | 0.02000 | 1020     |
| 0.02109 | 551.4 | 0.01975 | 693.0 | 0.01797 | 1079 | 0.02010 | 1019     |
| 0.02119 | 550.6 | 0.01985 | 691.4 | 0.01806 | 1077 | 0.02020 | 1017     |
| 0.02130 | 549.8 | 0.01995 | 689.7 | 0.01815 | 1075 | 0.02031 | 1015     |
| 0.02141 | 549.1 | 0.02005 | 688.1 | 0.01824 | 1073 | 0.02041 | 1014     |
| 0.02151 | 548.3 | 0.02015 | 686.5 | 0.01833 | 1071 | 0.02051 | 1012     |
| 0.02162 | 547.5 | 0.02025 | 684.9 | 0.01842 | 1069 | 0.02061 | 1010     |
| 0.02172 | 546.8 | 0.02035 | 683.4 | 0.01851 | 1067 | 0.02071 | 1009     |
| 0.02183 | 546.0 | 0.02044 | 681.8 | 0.01860 | 1065 | 0.02081 | 1007     |
| 0.02193 | 545.3 | 0.02054 | 680.3 | 0.01869 | 1063 | 0.02091 | 1006     |
|         |       |         |       |         |      |         | (Contd.) |

| 0.02203 | 544.6 | 0.02064 | 678.8 | 0.01877 | 1061 | 0.02101 | 1004     |
|---------|-------|---------|-------|---------|------|---------|----------|
| 0.02214 | 543.8 | 0.02073 | 677.3 | 0.01886 | 1059 | 0.02110 | 1003     |
| 0.02224 | 543.1 | 0.02083 | 675.8 | 0.01895 | 1057 | 0.02120 | 1001     |
| 0.02234 | 542.4 | 0.02092 | 674.3 | 0.01904 | 1056 | 0.02130 | 999.7    |
| 0.02244 | 541.7 | 0.02102 | 672.9 | 0.01912 | 1054 | 0.02139 | 998.2    |
| 0.02254 | 541.0 | 0.02111 | 671.4 | 0.01921 | 1052 | 0.02149 | 996.7    |
| 0.02264 | 540.3 | 0.02121 | 670.0 | 0.01929 | 1050 | 0.02159 | 995.3    |
| 0.02274 | 539.6 | 0.02130 | 668.6 | 0.01938 | 1048 | 0.02168 | 993.9    |
| 0.02284 | 538.9 | 0.02139 | 667.2 | 0.01946 | 1046 | 0.02178 | 992.4    |
| 0.02294 | 538.2 | 0.02149 | 665.8 | 0.01955 | 1045 | 0.02187 | 991.0    |
| 0.02304 | 537.6 | 0.02158 | 664.4 | 0.01963 | 1043 | 0.02196 | 989.6    |
| 0.02314 | 536.9 | 0.02167 | 663.0 | 0.01972 | 1041 | 0.02206 | 988.3    |
| 0.02324 | 536.3 | 0.02176 | 661.7 | 0.01980 | 1040 | 0.02215 | 986.9    |
| 0.02333 | 535.6 | 0.02185 | 660.3 | 0.01988 | 1038 | 0.02224 | 985.5    |
| 0.02343 | 535.0 | 0.02195 | 659.0 | 0.01996 | 1036 | 0.02234 | 984.2    |
| 0.02353 | 534.3 | 0.02204 | 657.7 | 0.02005 | 1034 | 0.02243 | 982.8    |
| 0.02362 | 533.7 | 0.02213 | 656.4 | 0.02013 | 1033 | 0.02252 | 981.5    |
| 0.02372 | 533.0 | 0.02222 | 655.1 | 0.02021 | 1031 | 0.02261 | 980.2    |
| 0.02382 | 532.4 | 0.02231 | 653.8 | 0.02029 | 1030 | 0.02270 | 978.9    |
| 0.02391 | 531.8 | 0.02239 | 652.5 | 0.02037 | 1028 | 0.02279 | 977.6    |
| 0.02401 | 531.2 | 0.02248 | 651.2 | 0.02045 | 1026 | 0.02288 | 976.3    |
| 0.02410 | 530.6 | 0.02257 | 650.0 | 0.02053 | 1025 | 0.02297 | 975.1    |
|         |       |         |       |         |      |         | (Contd.) |

| 0.02419 | 530.0 | 0.02266 | 648.7 | 0.02061 | 1023  | 0.02306 | 973.8    |
|---------|-------|---------|-------|---------|-------|---------|----------|
| 0.02429 | 529.4 | 0.02275 | 647.5 | 0.02069 | 1022  | 0.02315 | 972.6    |
| 0.02438 | 528.8 | 0.02283 | 646.3 | 0.02077 | 1020  | 0.02324 | 971.3    |
| 0.02447 | 528.2 | 0.02292 | 645.1 | 0.02085 | 1018  | 0.02333 | 970.1    |
| 0.02457 | 527.6 | 0.02301 | 643.9 | 0.02093 | 1017  | 0.02342 | 968.9    |
| 0.02466 | 527.0 | 0.02309 | 642.7 | 0.02101 | 1015  | 0.02351 | 967.6    |
| 0.02475 | 526.4 | 0.02318 | 641.5 | 0.02109 | 1014  | 0.02359 | 966.4    |
| 0.02484 | 525.9 | 0.02327 | 640.3 | 0.02117 | 1012  | 0.02368 | 965.2    |
| 0.02493 | 525.3 | 0.02335 | 639.1 | 0.02124 | 1011  | 0.02377 | 964.1    |
| 0.02502 | 524.7 | 0.02344 | 638.0 | 0.02132 | 1009  | 0.02385 | 962.9    |
| 0.02511 | 524.2 | 0.02352 | 636.8 | 0.02140 | 1008  | 0.02394 | 961.7    |
| 0.02520 | 523.6 | 0.02361 | 635.7 | 0.02147 | 1006  | 0.02403 | 960.6    |
| 0.02529 | 523.0 | 0.02369 | 634.6 | 0.02155 | 1005  | 0.02411 | 959.4    |
| 0.02538 | 522.5 | 0.02377 | 633.4 | 0.02163 | 1004  | 0.02420 | 958.3    |
| 0.02547 | 522.0 | 0.02386 | 632.3 | 0.02170 | 1002  | 0.02428 | 957.1    |
| 0.02556 | 521.4 | 0.02394 | 631.2 | 0.02178 | 1001  | 0.02437 | 956.0    |
| 0.02565 | 520.9 | 0.02402 | 630.1 | 0.02186 | 999.4 | 0.02445 | 954.9    |
| 0.02574 | 520.3 | 0.02411 | 629.0 | 0.02193 | 998.0 | 0.02454 | 953.8    |
| 0.02583 | 519.8 | 0.02419 | 627.9 | 0.02201 | 996.6 | 0.02462 | 952.7    |
| 0.02591 | 519.3 | 0.02427 | 626.9 | 0.02208 | 995.2 | 0.02470 | 951.6    |
| 0.02600 | 518.8 | 0.02435 | 625.8 | 0.02215 | 993.9 | 0.02479 | 950.5    |
| 0.02609 | 518.2 | 0.02443 | 624.7 | 0.02223 | 992.5 | 0.02487 | 949.4    |
|         |       |         |       |         |       |         | (Contd.) |

| 0.02618 | 517.7 | 0.02452 | 623.7 | 0.02230 | 991.2 | 0.02495 | 948.4    |
|---------|-------|---------|-------|---------|-------|---------|----------|
| 0.02626 | 517.2 | 0.02460 | 622.7 | 0.02238 | 989.8 | 0.02504 | 947.3    |
| 0.02635 | 516.7 | 0.02468 | 621.6 | 0.02245 | 988.5 | 0.02512 | 946.2    |
| 0.02643 | 516.2 | 0.02476 | 620.6 | 0.02252 | 987.2 | 0.02520 | 945.2    |
| 0.02652 | 515.7 | 0.02484 | 619.6 | 0.02260 | 985.9 | 0.02528 | 944.1    |
| 0.02661 | 515.2 | 0.02492 | 618.5 | 0.02267 | 984.6 | 0.02536 | 943.1    |
| 0.02669 | 514.7 | 0.02500 | 617.5 | 0.02274 | 983.3 | 0.02544 | 942.1    |
| 0.02678 | 514.2 | 0.02508 | 616.5 | 0.02281 | 982.0 | 0.02552 | 941.0    |
| 0.02686 | 513.7 | 0.02516 | 615.5 | 0.02289 | 980.7 | 0.02561 | 940.0    |
| 0.02694 | 513.2 | 0.02524 | 614.6 | 0.02296 | 979.5 | 0.02569 | 939.0    |
| 0.02703 | 512.8 | 0.02531 | 613.6 | 0.02303 | 978.2 | 0.02577 | 938.0    |
| 0.02711 | 512.3 | 0.02539 | 612.6 | 0.02310 | 977.0 | 0.02585 | 937.0    |
| 0.02720 | 511.8 | 0.02547 | 611.6 | 0.02317 | 975.7 | 0.02593 | 936.0    |
| 0.02728 | 511.3 | 0.02555 | 610.7 | 0.02324 | 974.5 | 0.02601 | 935.1    |
| 0.02736 | 510.9 | 0.02563 | 609.7 | 0.02331 | 973.3 | 0.02608 | 934.1    |
| 0.02744 | 510.4 | 0.02570 | 608.8 | 0.02338 | 972.1 | 0.02616 | 933.1    |
| 0.02753 | 509.9 | 0.02578 | 607.8 | 0.02345 | 970.9 | 0.02624 | 932.1    |
| 0.02761 | 509.5 | 0.02586 | 606.9 | 0.02352 | 969.7 | 0.02632 | 931.2    |
| 0.02769 | 509.0 | 0.02594 | 605.9 | 0.02359 | 968.5 | 0.02640 | 930.2    |
| 0.02777 | 508.5 | 0.02601 | 605.0 | 0.02366 | 967.3 | 0.02648 | 929.3    |
| 0.02786 | 508.1 | 0.02609 | 604.1 | 0.02373 | 966.1 | 0.02655 | 928.3    |
| 0.02794 | 507.6 | 0.02616 | 603.2 | 0.02380 | 964.9 | 0.02663 | 927.4    |
|         |       |         |       |         |       |         | (Contd.) |

| 0.02802 | 507.2 | 0.02624 | 602.3 | 0.02387 | 963.8 | 0.02671 | 926.5    |
|---------|-------|---------|-------|---------|-------|---------|----------|
| 0.02810 | 506.7 | 0.02632 | 601.4 | 0.02394 | 962.6 | 0.02679 | 925.5    |
| 0.02818 | 506.3 | 0.02639 | 600.5 | 0.02401 | 961.5 | 0.02686 | 924.6    |
| 0.02826 | 505.9 | 0.02647 | 599.6 | 0.02408 | 960.3 | 0.02694 | 923.7    |
| 0.02834 | 505.4 | 0.02654 | 598.7 | 0.02415 | 959.2 | 0.02702 | 922.8    |
| 0.02842 | 505.0 | 0.02662 | 597.8 | 0.02421 | 958.1 | 0.02709 | 921.9    |
| 0.02850 | 504.5 | 0.02669 | 596.9 | 0.02428 | 956.9 | 0.02717 | 921.0    |
| 0.02858 | 504.1 | 0.02677 | 596.1 | 0.02435 | 955.8 | 0.02724 | 920.1    |
| 0.02866 | 503.7 | 0.02684 | 595.2 | 0.02442 | 954.7 | 0.02732 | 919.2    |
| 0.02874 | 503.3 | 0.02691 | 594.3 | 0.02449 | 953.6 | 0.02739 | 918.3    |
| 0.02882 | 502.8 | 0.02699 | 593.5 | 0.02455 | 952.5 | 0.02747 | 917.4    |
| 0.02889 | 502.4 | 0.02706 | 592.6 | 0.02462 | 951.4 | 0.02755 | 916.6    |
| 0.02897 | 502.0 | 0.02714 | 591.8 | 0.02469 | 950.3 | 0.02762 | 915.7    |
| 0.02905 | 501.6 | 0.02721 | 590.9 | 0.02475 | 949.3 | 0.02769 | 914.8    |
| 0.02913 | 501.2 | 0.02728 | 590.1 | 0.02482 | 948.2 | 0.02777 | 914.0    |
| 0.02921 | 500.8 | 0.02735 | 589.3 | 0.02489 | 947.1 | 0.02784 | 913.1    |
| 0.02928 | 500.3 | 0.02743 | 588.5 | 0.02495 | 946.1 | 0.02792 | 912.3    |
| 0.02936 | 499.9 | 0.02750 | 587.6 | 0.02502 | 945.0 | 0.02799 | 911.4    |
| 0.02944 | 499.5 | 0.02757 | 586.8 | 0.02508 | 944.0 | 0.02806 | 910.6    |
| 0.02952 | 499.1 | 0.02764 | 586.0 | 0.02515 | 942.9 | 0.02814 | 909.8    |
| 0.02959 | 498.7 | 0.02772 | 585.2 | 0.02521 | 941.9 | 0.02821 | 908.9    |
| 0.02967 | 498.3 | 0.02779 | 584.4 | 0.02528 | 940.8 | 0.02828 | 908.1    |
|         |       |         |       |         |       |         | (Contd.) |

| Table S6 | (Contd.) |
|----------|----------|
|          |          |

| <br>0.02975 | 497.9 | 0.02786 | 583.6 | 0.02534 | 939.8 | 0.02836 | 907.3 |
|-------------|-------|---------|-------|---------|-------|---------|-------|
| 0.02982     | 497.5 | 0.02793 | 582.8 | 0.02541 | 938.8 | 0.02843 | 906.5 |
| 0.02990     | 497.1 | 0.02800 | 582.0 | 0.02547 | 937.8 | 0.02850 | 905.6 |
| 0.02997     | 496.8 | 0.02807 | 581.2 | 0.02554 | 936.8 | 0.02857 | 904.8 |
| 0.03005     | 496.4 | 0.02814 | 580.4 | 0.02560 | 935.8 | 0.02865 | 904.0 |



**Fig. S7** The relative abundances of all the  $AX_m^{(z-m)+}$  species as a function of the total complex concentration (C<sub>t</sub>) for **RuMV2**(PF<sub>6</sub>)<sub>6</sub>·2H<sub>2</sub>O in aqueous media. The relative abundances under the conditions adopted in the spectroscopic and photolysis studies are listed in Table S7.



**Fig. S8** The relative abundances of all the  $AX_m^{(z-m)+}$  species as a function of the total complex concentration (C<sub>t</sub>) for **RuMV4**(PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O in aqueous media. The relative abundances under the conditions adopted in the spectroscopic and photolysis studies are listed in Table S8.



**Fig. S9** The relative abundances of all the  $AX_m^{(z-m)+}$  species as a function of the total complex concentration (C<sub>t</sub>) for **RuMV4**(Cl)<sub>10</sub> in aqueous media. The relative abundances under the conditions adopted in the spectroscopic and photolysis studies are listed in Table S9, even though this compound was not employed in both studies.



**Fig. S10** The relative abundances of all the  $AX_m^{(z-m)+}$  species as a function of the total complex concentration (C<sub>t</sub>) for **RuMV6**(PF<sub>6</sub>)<sub>14</sub>·H<sub>2</sub>O in aqueous media. The relative abundances under the conditions adopted in the spectroscopic and photolysis studies are listed in Table S10.

| Chemical species              | Spectroscopic studies (%)<br>Ct = 0.057 mM | Photolysis studies (%)<br>Ct = 0.040 mM |
|-------------------------------|--------------------------------------------|-----------------------------------------|
| $A^{6+}$                      | 17.7                                       | 25.3                                    |
| $AX^{5+}$                     | 50.3                                       | 51.8                                    |
| $AX_2^{4+}$                   | 28.6                                       | 21.2                                    |
| AX <sub>3</sub> <sup>3+</sup> | 3.26                                       | 1.73                                    |
| $AX_4^{2+}$                   | $7.42 \times 10^{-2}$                      | $2.83 \times 10^{-2}$                   |
| $AX_5^+$                      | $3.37 \times 10^{-4}$                      | $9.26 \times 10^{-5}$                   |
| $AX_6$                        | $3.07 \times 10^{-7}$                      | $6.06 \times 10^{-8}$                   |

**Table S7** The relative abundances of the chemical species for  $RuMV2(PF_6)_6 \cdot 2H_2O$  in aqueous media under the conditions adopted in the spectroscopic and photolysis studies.

| Chemical species              | Spectroscopic studies (%)<br>Ct = 0.057 mM | Photolysis studies (%)<br>Ct = 0.040 mM |
|-------------------------------|--------------------------------------------|-----------------------------------------|
| $A^{10+}$                     | 1.35                                       | 3.01                                    |
| $AX^{9+}$                     | 7.87                                       | 13.2                                    |
| $AX_2^{8+}$                   | 22.9                                       | 29.0                                    |
| AX <sub>3</sub> <sup>7+</sup> | 33.2                                       | 31.8                                    |
| $AX_4^{6+}$                   | 24.2                                       | 17.5                                    |
| AX <sub>5</sub> <sup>5+</sup> | 8.78                                       | 4.79                                    |
| $AX_{6}^{4+}$                 | 1.60                                       | 0.657                                   |
| $AX_{7}^{3+}$                 | 0.145                                      | 0.451                                   |
| $AX_8^{2+}$                   | $6.58 \times 10^{-3}$                      | $1.54 \times 10^{-3}$                   |
| $AX_9^+$                      | $1.49 \times 10^{-4}$                      | $2.65 \times 10^{-5}$                   |
| $AX_{10}$                     | $1.70 \times 10^{-6}$                      | $2.27 \times 10^{-7}$                   |

**Table S8** The relative abundances of the chemical species for  $RuMV4(PF_6)_{10}$ ·H<sub>2</sub>O in aqueous media under the conditions adopted in the spectroscopic and photolysis studies.

| Chemical species              | Spectroscopic studies (%)<br>Ct = 0.057  mM | Photolysis studies (%)<br>Ct = 0.040 mM |
|-------------------------------|---------------------------------------------|-----------------------------------------|
| $A^{10+}$                     | 9.38                                        | 15.5                                    |
| $AX^{9+}$                     | 28.3                                        | 34.7                                    |
| $AX_2^{8+}$                   | 36.6                                        | 33.3                                    |
| AX <sub>3</sub> <sup>7+</sup> | 20.4                                        | 13.8                                    |
| AX4 <sup>6+</sup>             | 4.88                                        | 2.45                                    |
| AX <sub>5</sub> <sup>5+</sup> | 0.503                                       | 0.187                                   |
| $AX_{6}^{4+}$                 | $2.23 \times 10^{-2}$                       | $6.14 \times 10^{-3}$                   |
| $AX_{7}^{3+}$                 | $4.24 \times 10^{-4}$                       | $8.66 \times 10^{-5}$                   |
| AX <sub>8</sub> <sup>2+</sup> | $3.47 \times 10^{-6}$                       | $5.26 \times 10^{-7}$                   |
| $AX_9^+$                      | $1.22 \times 10^{-8}$                       | $1.37 \times 10^{-9}$                   |
| $AX_{10}$                     | $1.85 \times 10^{-11}$                      | $1.54 \times 10^{-12}$                  |

**Table S9** The relative abundances of the chemical species for  $RuMV4(Cl)_{10}$  in aqueous media under the conditions adopted in the spectroscopic and photolysis studies.

| Chemical species              | Spectroscopic studies (%)<br>Ct = 0.063  mM | Photolysis studies (%)<br>Ct = 0.040 mM |
|-------------------------------|---------------------------------------------|-----------------------------------------|
| A <sup>14+</sup>              | 0.140                                       | 0.664                                   |
| AX <sup>13+</sup>             | 1.27                                        | 4.08                                    |
| $AX_2^{12+}$                  | 6.48                                        | 14.0                                    |
| AX3 <sup>11+</sup>            | 18.5                                        | 27.1                                    |
| $AX_{4}^{10+}$                | 29.6                                        | 29.2                                    |
| AX <sub>5</sub> <sup>9+</sup> | 26.4                                        | 17.7                                    |
| $AX_{6}^{8+}$                 | 13.3                                        | 5.98                                    |
| $AX_{7}^{7+}$                 | 3.72                                        | 1.13                                    |
| AX <sub>8</sub> <sup>6+</sup> | 0.584                                       | 0.120                                   |
| AX9 <sup>5+</sup>             | $5.14 \times 10^{-2}$                       | $7.15 \times 10^{-3}$                   |
| $AX_{10}^{4+}$                | $2.53 \times 10^{-3}$                       | $2.38 \times 10^{-4}$                   |
| $AX_{11}^{3+}$                | $6.99 \times 10^{-5}$                       | $4.44 \times 10^{-6}$                   |
| $AX_{12}^{2+}$                | $1.05 \times 10^{-6}$                       | $4.63 \times 10^{-8}$                   |
| $AX_{13}^{+}$                 | $9.35 \times 10^{-9}$                       | $2.71 \times 10^{-10}$                  |
| $AX_{14}$                     | $4.53 \times 10^{-11}$                      | $8.86 \times 10^{-13}$                  |

**Table S10** The relative abundances of the chemical species for  $\mathbf{RuMV6}(\mathbf{PF}_6)_{14}$ ·H<sub>2</sub>O in aqueous media under the conditions adopted in the spectroscopic and photolysis studies.



**Fig. S11** Photochemical H<sub>2</sub> production from an aqueous acetate buffer solution (0.03 M CH<sub>3</sub>COOH and 0.07 M CH<sub>3</sub>COONa; pH 5.0, 10 mL) containing 30 mM EDTA and 0.1 mM *cis*-Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, under Ar atmosphere at 20 °C in the presence of additional components: (a) 0.04 mM [Ru(bpy)<sub>3</sub>](NO<sub>3</sub>)·3H<sub>2</sub>O and 0.16 mM [MV](NO<sub>3</sub>)<sub>2</sub>; (b) 0.04 mM **RuMe2**(PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O; (c) 0.04 mM **RuMe2**(PF<sub>6</sub>)<sub>2</sub>·H<sub>2</sub>O and 0.16 mM [MV](NO<sub>3</sub>)<sub>2</sub>.



**Fig. S12** Deconvolution studies on the differential pulse voltammograms of (a) **RuMV2**(PF<sub>6</sub>)<sub>6</sub>·2H<sub>2</sub>O, (b) **RuMV4**(PF<sub>6</sub>)<sub>10</sub>·H<sub>2</sub>O, and (c) **RuMV6**(PF<sub>6</sub>)<sub>14</sub>·H<sub>2</sub>O. Experimental data are taken from those given in Fig. S4. For each case, deconvolution was carried out for the potential range where the successive one-electron reductions of viologen appear (-0.5  $\sim$  - 1.5 V vs. Fc/Fc<sup>+</sup>).



**Fig. S13** Cyclic voltammograms of (a)  $MV2(PF_6)_4 \cdot 2H_2O$ , (b)  $MV4(PF_6)_8 \cdot 3H_2O$ , and (c)  $MV6(PF_6)_{12} \cdot 4H_2O$  (1 mM) in an acetonitrile solution containing 0.1 M TBAP (TBAP = tetra(n-butyl)ammonium perchlorate) at room temperature under Ar atmosphere. Each voltammogram was recorded at a sweep rate of 50 mVs<sup>-1</sup>.

Electronic Supplementary Information for Dalton Transactions This journal is © The Royal Society of Chemistry 2010



**Fig. S14** Differential pulse voltammograms of (a)  $MV2(PF_6)_4 \cdot 2H_2O$ , (b)  $MV4(PF_6)_8 \cdot 3H_2O$ , and (c)  $MV6(PF_6)_{12} \cdot 4H_2O$  (1 mM) in an acetonitrile solution containing 0.1 M TBAP (TBAP = tetra(n-butyl)ammonium perchlorate) at room temperature under Ar atmosphere. Each voltammogram was recorded using a glassy carbon disk as the working electrode, at a sweep rate of 50 mVs<sup>-1</sup>, a potential amplitude of 50 mV, and a step height of 4 mV.

#### References

- (1) S. E. Okan and D. C. Champeney, J. Solution Chem., 1997, 26, 405.
- (2) H. Yokoyama, K. Shinozaki, S. Hattori and F. Miyazaki, Bull. Chem. Soc. Jpn., 1997, 70, 2357.
- (3) E. Baumgartner, M. Busch and R. Fernändez-Prini, J. Phys. Chem., 1970, 74, 182