Electronic Supplementary Information for:

Unprecedented H-Atom Transfer from Water to Ketyl Radicals mediated by Cp₂TiCl.

Miguel Paradas,[†] Araceli G. Campaña,[†] Marisa L. Marcos,[‡] José Justicia,[†] Elena Buñuel,[¶] Ali Haidour,^c Rafael Robles,[†] Diego J. Cardenas, *[¶] J. Enrique Oltra,*[†] and Juan M. Cuerva*[†]

[†]Department of Organic Chemistry, Faculty of Sciences, University of Granada, E-18071 Granada (Spain).

[‡]Department of Physical Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid (Spain).

[¶]Department of Organic Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, E-28049 Cantoblanco, Madrid (Spain).

[©]Scientific Instrument Center, Granada, 18071 (Spain)

General Details. For all reactions using titanocene, solvents and additives were thoroughly deoxygenated prior to use. The next complexes¹ were prepared following reported procedures: $(Cp_2TiCl)_2$ (8),² $(Cp_2TiCl)_2ZnCl_2$ (A),³ and $(Cp_2TiCl)_2MnCl_2$ (B).³ They are high air-sensitive compounds and it is recommended to be handled in a globes box under Ar atmosphere. Pinacols 3 are known compounds and were isolated as pure samples showing NMR spectra identical to reported data.⁴

General procedure for control experiments. Strictly deoxygenated THF (20 mL) was added under Ar atmosphere to a mixture of titanocene(III) complex (0.3 mmol) and an additive, if is required. A solution of acetophenone (0.6 mmol) in THF (2 mL) was then added. The mixture was stirred for 13 h and then diluted with EtOAc, washed with brine, dried over anhydrous Na_2SO_4 , and the solvent removed. The residue was submitted to flash chromatography (EtOAc/Hexane mixtures) to give the corresponding products.

¹ Titanocene(III) is usually formed in situ by reduction of Cp_2TiCl_2 with Mn or Zn dust, and

consequently is contaminated by stoichiometric amounts of $MnCl_2$ or $ZnCl_2$. Therefore, we have carried out the spectroscopic study of closely related compounds $(Cp_2TiCl)_2ZnCl_2$ (**A**) and $(Cp_2TiCl)_2MnCl_2$ (**B**). ² R. S. P. Coutts, P. C. Wailes and R. L. Martin, *J. Organomet. Chem.* **1973**, *47*, 375-382.

³ These complexes are prepared from benzene and some co-crystallization benzene molecules are present in the solid sample: D. G. Sekutowsky and G. D. Stucky, *Inorg. Chem.* **1975**, *14*, 2192-2199.

⁴ M. Paradas, A. G. Campaña, R. E. Estévez, L. Álvarez de Cienfuegos, T. Jiménez, R. Robles, J. M. Cuerva and J. E. Oltra, *J. Org. Chem.* **2009**, *74*, 3616-3619.

Pinacolization of acetophenone (2) in the presence of different potential H-atom donors.

Entry	Additive	Yield (%) (<i>dl:meso</i>)
1		89 (7:3)
2	OH	60 (3:2)
3	СООН	48 (7:3)
4	N H ⁺ CF	46 (65:35)

UV-vis spectra of complexes A and B.

Figure S2. UV-vis spectra of B in THF with increasing amounts of H₂O

Figure S3. UV-vis spectra of ZnCl₂ in THF with increasing amounts of H₂O

Figure S4. UV-vis spectra of MnCl₂ in THF with increasing amounts of H₂O

Control UV-vis spectra.

In the UV-VIS spectra of 8 in THF with 10 equiv of 2,4,6-collidine hydrochloride (Figure S6) and 10 equiv of pyridine hydrochloride (Figure S7) the absorbing wavelength at 450 nm, characteristic of 8, is retained. The changes in absorbance are due to minor concentration changes during the preparation of the samples. Moreover, both salts are partially insoluble in THF at these concentrations and perfectly clear solutions could not be obtained.

Figure S5. UV-vis spectra of **8** in THF (a) with 10 equiv of 2,4,6-collidine hydrochloride (b).

Figure S6. UV-vis spectra of **8** in THF (a) with 10 equiv of pyridine hydrochloride (b). **Control UV-vis spectrum of Figure 2.**

Figure S7. Absorption spectra of $(Cp_2TiCl)_2$ (0.01 M) in THF in the presence of increasing amount of water: (A) anhydrous (B) 0.5 equiv of water (C) 1 equiv of water (D) 1.5 equiv of water (E) 2 equiv of water (F) 3 equiv of water (G) 6 equiv of water (H) 8 equiv of water (I) open to air.

¹H NMR of compounds 8 and A in anhydrous conditions and in the presence of $\underline{D_2O_{\cdot}}$

Compound 8: ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 10H).

Compound A: ¹H NMR (400 MHz, CDCl₃) δ 6.31 (s, 10H).

Compound 8 + D₂O: ¹H NMR (400 MHz, CDCl₃) δ 6.32 (s, 10H).

Compound A + D₂O: ¹H NMR (400 MHz, CDCl₃) δ 6.32 (s, 10H).

⁵ In some cases we found complex signals which increased with time at 6.35-6.50 ppm. The presence of these signals was also related with a lost of the typical reactivity of Cp_2TiCl . Consequently, we assigned those signals to impurities derived from the decomposition of the oxygen sensitive Ti(III)-complexes.

Figure S9. (a) Copy of ¹H NMR of **8** equiv.)

(b) Copy of ¹H NMR of \mathbf{A} with D₂O (4

Figure S10. Copy of ¹H NMR of A with D_2O

pKa Measures

pKa Values were measured using standard techniques. As experiment control we determined the pKa of 2,4,6-collidine and, within the experimental error, we obtained a similar value to the described one (pKa described =7.43, pKa measured = 7.42). The acidity of the trinuclear complexes **A** and **B** was higher than the dinuclear **8**. We attributed this fact to the presence of the potential acid species Zn^{2+} and Mn^{2+} in the sample. Therefore, we measured the apparent pKa of these cations in our conditions. Titration graphs showed that the decrease in pKa of the trinuclear complexes toward (Cp₂TiCl)₂ is due to the presence of such ions.

Figure S11. Titration graphs of aqueous solutions of complexes 9-11.

Figure S12. Titration graphs of aqueous solutions of complexes **8**, **A**, **B**, MnCl₂, ZnCl₂ and 2,4,6-collidine.

DOSY experiments

DOSY experiments were performed on a Varian Direct Drive 500 MHz spectrometer equipped with PERFORMA II z-axis gradient amplifier and an XHP probe with a z-axis gradient coil. Maximum gradient strength was 56 G/cm. The standard Varian pulse program, Dbppste, employing a Bipolar Pulse Pair Stimulated Echo was used. Diffusion gradient length was used with total duration of 2 ms. Gradient stabilization and diffusion delays were 0.5 ms and 50 ms, respectively. Individual rows of the quasi-2D diffusion databases were phased and baseline corrected.

Preparation of DOSY samples.

Four dry NMR tubes were introduced in a globes box under Ar atmosphere. In each tube 0.5 mmol of each compound (2 samples of $(Cp_2TiCl)_2$, and 1 sample of $[Cp_2TiCl]_2ZnCl_2\cdot 2C_6H_6$ and $[Cp_2TiCl]_2MnCl_2\cdot 2C_6H_6$, respectively) were introduced. Then, THF-*d*₈ (0.5 mL) was added. The tubes were sealed under Ar atmosphere and the samples were submitted to DOSY experiences.

After that, 0.5 mmol of Cp_2TiCl_2 was added to the sample containing $(Cp_2TiCl)_2$ complex, and, 8 mmol of D_2O were added to the other 3 samples containing $(Cp_2TiCl)_2$, $[Cp_2TiCl]_2ZnCl_2\cdot 2C_6H_6$ and $[Cp_2TiCl]_2MnCl_2\cdot 2C_6H_6$, respectively. These samples were submitted again to DOSY experiences. All DOSY experiences were performed the same day.

Discussion.⁶

All titanocene(III) samples are paramagnetic.⁷ Therefore, a perfect and reproducible adjustment of the magnetic field was not possible. We observed in control experiments that the diffusion coefficients differ up to $1 \text{ m}^2 \text{ seg}^{-1} 10^{-10}$ for the same sample.

In these conditions small changes in size can not be detected. Nevertheless, the usual variation of such coefficients between closely related monomeric and dimeric structures for small molecules is expected to be higher, if Stokes-Einstein relation is fitted. In fact, differences of one order of magnitude higher have been recently reported in closely related zirconocene derivatives.⁸ Therefore, similar D values for $(Cp_2TiCl)_2$ (D = 7.87 m² seg⁻¹ 10⁻¹⁰) and $(Cp_2TiCl)_2ZnCl_2$ (D = 7.07 m² seg⁻¹ 10⁻¹⁰) were related with similar size for both products. Paramagnetism of $(Cp_2TiCl)_2MnCl_2$ avoided a good quality DOSY spectra for such complex.

In order to ensure that the DOSY experiments of aquacomplex were reliable, we added 4 equiv. of D₂O to the above mentioned DOSY experiments. The registered DOSY experiments showed minor variations in the diffusion coefficients ((Cp₂TiCl)₂, D = 7.70 m² seg⁻¹ 10⁻¹⁰, (Cp₂TiCl)₂ZnCl₂, D = 7.34 m² seg⁻¹ 10⁻¹⁰) which could be attributed to small changes in the magnetic field, viscosity or density but not to a significant change in the size.⁹ Therefore the new specie, assigned as aquacomplex, has similar size to the precursor complexes.

⁶ Selected referentes: D. Li, G. Kagan, R. Hopson and P. G. Williard, *J. Am. Chem. Soc.* 2009, *131*, 5627-5634; C. S. Johnson, Jr., *Prog. NMR Spectrosc.* 1999, *34*, 203-256; D. Li, I. Keresztes, R. Hopson and P. G. Williard, *Acc. Chem. Res.* 2009, *42*, 270-280; T. Brand, E. J. Cabrita and S. Berger, *Prog. NMR Spectrosc.* 2005, *46*, 159-196.

⁷ Described values for the paramagnetic susceptibility of solid Ti(III) compounds is about 1.6 μB at room temperature: Ref 1; J. R. Hagadorn and J. Arnold, *Organometallics* **1998**, *17*, 1355-1368.

⁸ N. E. Schlörer, E. J. Cabrita and S. Berger, Angew. Chem. Int. Ed. 2002, 41, 107-109.

⁹ G. H. Sorland and D. Aksnes, Mag. Reson. Chem. 2002, 40, S139-S146.

In order to obtain information about the size of $(Cp_2TiCl)_2$ and $(Cp_2TiCl)_2ZnCl_2$, a new experiment was carried out. An equimolecular amount of commercial Cp_2TiCl_2 was added to a DOSY experience of Cp_2TiCl with a diffusion coefficient of 8.28 m² seg⁻¹ 10⁻¹⁰ (Figure S15). A slightly shifted single signal (6.32 ppm) was observed. This fact can be attributed to a coincidence of the chemical shift of both species or to a rapid self-exchange process yielding an average signal. In any case, differences in size can be related with the presence of two different diffusion peaks or with an average value of the two diffusion coefficients. In this experiment, we obtained a single diffusion peak at $D = 8.05 \text{ m}^2 \text{ seg}^{-1} 10^{-10}$ (Figure S16) which suggest that $(Cp_2TiCl)_2$ and Cp_2TiCl_2 present similar molecular size in a 0.2 M THF solution and, therefore, $(Cp_2TiCl)_2$ can be better described like the monomeric structure Cp_2TiCl .¹⁰

Figure S13. Copy of DOSY spectrum of (Cp₂TiCl)₂

¹⁰ More precisely, diffusion coefficients are proportional to the hydrodynamic volume, which is related to the molecular weight within similar structures.

Figure S14. Copy of DOSY spectrum of (Cp₂TiCl)₂ + H₂O

Figure S15. Copy of DOSY spectrum of (Cp₂TiCl)₂ZnCl₂

Figure S16. Copy of DOSY spectrum of (Cp₂TiCl)₂ZnCl₂ + H₂O

Figure S17. Copy of DOSY spectrum of (Cp₂TiCl)₂

Figure S18. Copy of DOSY spectrum of (Cp₂TiCl)₂ and Cp₂TiCl₂

¹⁷O NMR experiences.

Experimental methods. ¹⁷O enriched (10% ¹⁷O) water was used in all the experiments. The oxygen-17 NMR spectra were taken in a 400 MHz unit (54.219 MHz for ¹⁷O). For simplicity the experiences were carried out decoupling in the ¹H channel.

Discussion. ¹⁷O NMR can be used to obtain information about the chemical environment of the oxygen nucleus. Therefore, ${}^{17}OH_2$ is an excellent choice to determine if water is interacting with a Lewis acidic specie.

Initially, we determined the chemical shift of ¹⁷O in mixtures of THF/water. We obtained two peaks at 18.71 and -13.89 ppm which were assigned to residual ¹⁷O-tetrahydrofurane and ¹⁷OH₂ respectively.^{11,12} The addition of only 4 equiv. of ¹⁷OH₂ to a solution of solid (Cp₂TiCl)₂ (0.05 mM in THF) promoted the disappearance of the signal corresponding to ¹⁷OH₂ whilst the ¹⁷O-THF signal remain. This fact suggests a broadening of the signal due to a fast interchange of coordinated and uncoordinated water. This broadening can not be assigned to the paramagnetism of the sample because of the ¹⁷O-tetrahydrofurane signal is almost unchanged. The addition of 16 equiv. of water resulted in the detection of a very broad signal between 5 and -45 ppm. The average of the chemical shift in this fast equilibrium is biased towards the uncoordinated water present in a 15:1 molar relationship. Temperature variable experiments could not be carried out due to the poor solubility of titanocene(III) complexes in THF at low temperatures.

Figure S19. Copy of the ¹⁷O NMR spectrum of THF

¹¹ The ¹⁷O chemical shift data for ¹⁷O-tetrahydrofurane was not found in literature. A control experiment using only THF gave the mentioned value of 18.71 ppm.

¹² This value of -13.89 ppm is close to the reported value of ¹⁷OH₂ in THF (-15 ppm): V. Mäemets and I. Koppel, *J. Chem. Research (S)* **1994**, 480-481.

Figure S20. Copy of the ¹⁷O NMR spectrum of a mixture of THF/¹⁷O-water

Figure S21. Copy of the ¹⁷O NMR spectrum of a mixture of complex 8 and ¹⁷OH₂ (4 equiv.)

Figure S22. Copy of the ¹⁷O NMR spectrum of a mixture of complex 8 and ¹⁷OH₂ (16 equiv.)

ELECTROCHEMICAL MEASUREMENTS

Apparatus

Electrochemical measurements were performed with an AUTOLAB PGSTAT30 electrochemistry system. Cyclic and square-wave voltammetry (CV and SWV, respectively) studies were carried out in a three-electrode cell under nitrogen atmosphere in anhydrous deoxygenated THF containing 0.15 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as supporting electrolyte. Polycrystalline Pt was used as working electrode; the counter electrode was a Pt gauze and the reference electrode was a silver wire quasi-reference electrode. Ferrocene (Fc) was used as internal standard, and all potentials in this work are referred to the Fc^+/Fc (abbreviation for ferrocene) couple.

Procedure and results

Based on the seminal works of Skrydstrups and Daasbjerg¹³ on the electrochemistry of Cp_2TiCl , we were interested in the study of the effect of H_2O in the reduction potential of Cp_2TiCl , generated in THF from Cp_2TiCl_2 and Mn dust.

As control experiment we reproduced the cyclic voltammetry of a standard solution of Cp₂TiCl (20 mM). It was prepared by stirring of a mixture of Cp₂TiCl₂ (100 mg, 0.40 mmol) and Mn dust (176 mg, 3.22 mmol) under an argon atmosphere in strictly dry THF (20 mL) until the solution turned into green (about 15 min).

In the voltammetric experiment, a THF solution of TBAPF_6 (20 mL, 0.15 M) was added to the electrochemical cell. The cell was closed and flushed with nitrogen for 10 min. The standard solution of Cp₂TiCl in strictly dry THF (5 mL) was added to the electrochemical cell and the solution was deoxygenated for 1 min.

At the end of the experiment a small amount of ferrocene was added, and the potential of the Fc^+/Fc couple was measured.

The CV recorded at 0.1 V/s and the SWV recorded at 15 Hz of Cp₂TiCl in THF solution in the absence of H₂O are presented in Figure S21a and S21b respectively. According to reported values, the cyclic voltammogram exhibits oxidation peaks at -0.81 V and -0.49 V vs Fc⁺/Fc. On the reverse sweep a reduction peak appears at -1.28 V vs Fc⁺/Fc.

¹³ R. J. Enemærke, J. Larsen, T. Skrydstrup and K. Daasbjerg, *J. Am. Chem. Soc.* **2004**, *126*, 7853-7864.

Figure S23

Subsequently, the effect of adding H_2O (10 equiv) to the solutions of Cp_2TiCl was studied. To this end, a deoxygenated solution of H_2O (73 mg, 4.02 mmol) in THF (2 mL) was added to the standard solution of Cp_2TiCl and the mixture was stirred until it turned blue (about 10 min).

In the voltammetric experiment, a THF solution of TBAPF_6 (22 mL, 0.15 M) was added to the electrochemical cell. The cell was closed and flushed with nitrogen for 10 min. 3 mL of the standard solution of Cp₂TiCl in aqueous THF was added to the electrochemical cell and the solution was deoxygenated for 1 min.

At the end of the experiment a small amount of ferrocene was added, and the potential of the Fc^+/Fc couple was measured.

The CV recorded at 0.1 V/s and the SWV recorded at 15 Hz of Cp₂TiCl in THF solution in the presence of H₂O (10 equiv) are presented in Figure S22a and S22b respectively. The first CV oxidation peak appears at -0.82 V vs Fc⁺/Fc. The comparison of the cyclic voltammetric responses shown in Figure S21a and S22a reveals that the first oxidation peak is completely independent of the presence of water. The second oxidation wave appears at an oxidation potential that is 60 mV lower than the previously reported one. Although this change is not directly related with this work, new experiments to explain this phenomena are under way. On the reverse sweep, both voltammograms exhibit similar reduction peaks.

Figure S24

COMPUTATIONAL METHODS

Calculations were performed with the GAUSSIAN 03 series of programs.¹⁴ The geometries of all complexes were optimized at the DFT level using the B3LYP hybrid functional,¹⁵ using the standard 6-31G(d) basis set for C, H, O and Cl. The standard LANL2DZ basis set, which includes a relativistic pseudopotential, was used for Ti. Unrestricted B3LYP was used for the radical species. Transition states were graphically located. Harmonic frequencies were calculated at the same level of theory to characterize the stationary points and to determine the zero-point energies (ZPE).

Calculated reaction energy for the coordination of H₂O or THF to Cp₂TiCl

¹⁴ Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A.Pople, Gaussian, Inc., Pittsburgh PA, 2003.

¹⁵ A.D. Becke, *Phys. Rev. A* **1988**, *38*, 3098-3100; C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785-789.

Calculated E+ZPE (hartrees) at B3LYP/6-31G(d) level for H_2O and THF

	E+ZPE	G
	(hartrees)	(hartrees)
H ₂ O	-76.385895	-76.404206
THF	-232.328183	-232.356827

Cp₂TiCl

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	22	0	0.000010	0.108507	-0.000005
2	17	0	-0.000127	2.441369	-0.000001
3	6	0	-2.321438	0.401138	-0.486107
4	6	0	-2.226137	0.110761	0.898279
5	6	0	-1.709049	-1.200462	1.038037
6	6	0	-1.495269	-1.723316	-0.266581
7	6	0	-1.862222	-0.728993	-1.211263
8	1	0	-2.631671	1.345321	-0.910728
9	1	0	-2.455837	0.796074	1.703906
10	1	0	-1.512468	-1.713700	1.970942
11	1	0	-1.116089	-2.708255	-0.502428
12	1	0	-1.814906	-0.821625	-2.288953
13	6	0	2.321413	0.401311	0.486081
14	6	0	2.226135	0.110886	-0.898296
15	6	0	1.709149	-1.200383	-1.038016
16	6	0	1.495410	-1.723217	0.266615
17	6	0	1.862285	-0.728838	1.211269
18	1	0	2.631573	1.345529	0.910676
19	1	0	2.455786	0.796189	-1.703946
20	1	0	1.512605	-1.713657	-1.970909
21	1	0	1.116301	-2.708175	0.502492
22	1	0	1.814977	-0.821445	2.288962
Zero-poir (Hartree/	nt correction= 'Particle)	=		0.170316	
Thermal	correction to	Energy=		0.181692	
Thermal	correction to	Enthalpy=		0.182636	
Thermal	correction to	Gibbs Free	Energy=	0.129023	
Sum of e	electronic and	l zero-point	Energies=	-905.2	288923
Sum of e	electronic and	thermal Ene	rgies=	-905.2	277548
Sum of e	electronic and	l thermal Ent	halpies=	-905.2	276603
Sum of e	electronic and	l thermal Fre	e Energies=	-905.3	330216

Cp₂TiCl(OH₂)

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	22	0	0.009211	-0.005296	0.082282
2	17	0	-0.072211	2.379758	-0.745033
3	8	0	0.080776	1.293809	1.948538
4	1	0	-0.746863	1.280449	2.454117
5	1	0	0.059753	2.133089	1.425021

6	6	0	-2.347142	0.157914	0.446013
7	6	0	-1.902091	-1.033704	1.086519
8	6	0	-1.448881	-1.914798	0.077997
9	6	0	-1.619783	-1.273383	-1.182980
10	6	0	-2.187657	-0.002823	-0.953063
11	1	0	-2.740468	1.044358	0.927405
12	1	0	-1.905394	-1.237159	2.150716
13	1	0	-1.040806	-2.903908	0.236356
14	1	0	-1.358082	-1.685647	-2.148812
15	1	0	-2.388827	0.751486	-1.700003
16	6	0	2.197978	-0.487001	1.008878
17	6	0	2.342428	0.395445	-0.089873
18	6	0	1.932994	-0.290260	-1.267602
19	6	0	1.520717	-1.587599	-0.885058
20	6	0	1.671138	-1.705286	0.527379
21	1	0	2.383652	-0.240960	2.045795
22	1	0	2.670999	1.423814	-0.044103
23	1	0	1.911519	0.124781	-2.266293
24	1	0	1.145168	-2.356510	-1.547487
25	1	0	1.429862	-2.574849	1.125067
	·				
Zero-poir (Hartree/	t correction= 'Particle)			0.195675	
Thermal	correction to	Energy=		0.209428	
Thermal	correction to	Enthalpy=		0.210372	
Thermal	correction to	Gibbs Free	Energy=	0.154235	
Sum of e	electronic and	zero-point	Energies=	-981.6	594360
Sum of e	electronic and	thermal Ene	ergies=	-981.6	580606
Sum of e	electronic and	thermal Ent	halpies=	-981.6	579662
Sum of e	electronic and	thermal Fre	ee Energies=	-981.7	735800

Cp₂TiCl(THF)

Center Atomic Atomic			Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	22	0	0.702285	0.017777	0.051139	
2	17	0	0.306631	-0.139180	2.476868	
3	6	0	-3.713563	0.284012	-1.087323	
4	6	0	-2.286389	-0.226078	-1.351796	
5	6	0	-3.880821	0.138260	0.450799	
6	8	0	-1.597163	-0.084724	-0.096198	
7	6	0	-2.555225	-0.478131	0.918259	
8	1	0	-3.815147	1.329787	-1.392207	
9	1	0	-4.450310	-0.296683	-1.650198	
10	1	0	-1.736457	0.344160	-2.101506	
11	1	0	-2.285248	-1.286095	-1.642575	
12	1	0	-4.034671	1.116283	0.915782	
13	1	0	-4.730276	-0.495227	0.722151	
14	1	0	-2.601665	-1.575832	0.942855	
15	1	0	-2.174010	-0.119838	1.871059	
16	6	0	0.443377	2.348432	0.475749	
17	6	0	0.175986	2.189829	-0.907746	
18	6	0	1.361180	1.749690	-1.536217	
19	6	0	2.377557	1.668084	-0.539981	
20	6	0	1.813640	2.044303	0.697497	
21	1	0	-0.271441	2.619995	1.239379	
22	1	0	-0.779675	2.348640	-1.389678	
23	1	0	1.477535	1.515769	-2.586820	
24	1	0	3.401029	1.355846	-0.701119	
25	1	0	2.310716	2.037368	1.657255	
26	6	0	0.322929	-2.341140	-0.487208	

27	6	0	1.325971	-2.315111	0.503839
28	6	0	2.448384	-1.628676	-0.022299
29	6	0	2.142683	-1.262598	-1.361534
30	6	0	0.819221	-1.682207	-1.646178
31	1	0	-0.667311	-2.761145	-0.366487
32	1	0	1.225360	-2.677183	1.515971
33	1	0	3.374220	-1.430787	0.502289
34	1	0	2.803013	-0.748737	-2.046332
35	1	0	0.299063	-1.555589	-2.587206
Zero-point	correction=			0.289879	
(Hartree/Pa	article)				
Thermal co	orrection to	Energy=		0.307619	
Thermal co	orrection to	Enthalpy=		0.308563	
Thermal co	orrection to	Gibbs Free 1	Energy=	0.241620	
Sum of ele	ectronic and	zero-point 1	Energies=	-1137.6	524381
Sum of ele	ectronic and	thermal Ener	rgies=	-1137.6	506641
Sum of ele	ectronic and	thermal Entl	halpies=	-1137.6	505697
Sum of ele	ectronic and	thermal Free	e Energies=	-1137.6	572640

	kcal mol ⁻¹		kcal mol	
$\Delta(\text{E+ZPE})^{\neq}$	11.7	Δ (E+ZPE)	-28.3	
$\Delta \mathrm{E}^{ eq}$	11.6	ΔG	-26.5	
$\Delta \mathrm{G}^{ eq}$	25.9			

12

Center Atomic Atomic Coordinates (Angstroms)				stroms)	
Number	Number	Туре	X	Y	Z
1	6	0	0.543540	1.229995	0.000019
2	6	0	1.967535	-1.172376	-0.000015
3	6	0	-0.182319	0.002533	-0.000017
4	6	0	1.930556	1.242216	0.000018
5	6	0	2.660798	0.046034	-0.00003
6	6	0	0.581465	-1.204005	-0.000016
7	6	0	-1.598198	-0.046653	-0.000046
8	6	0	-2.551518	1.103486	-0.000018
9	8	0	-2.164466	-1.299752	0.000073
10	1	0	0.011573	2.176283	0.000068
11	1	0	2.520411	-2.108827	-0.000021
12	1	0	2.453023	2.195846	0.000045
13	1	0	3.746820	0.063581	-0.00004
14	1	0	0.058278	-2.153336	-0.000023
15	1	0	-3.206751	1.079957	0.885838
16	1	0	-3.207496	1.079295	-0.885300
17	1	0	-2.042084	2.067972	-0.000609
18	1	0	-3.129198	-1.210139	-0.000105
Zero-poin (Hartree/	t correction= Particle)			0.147839	
Thermal	correction to	Energy=		0.156585	
Thermal	correction to	Enthalpy=		0.157529	
Thermal	correction to	Gibbs Free	Energy=	0.112903	
Sum of e	lectronic and	zero-point	Energies=	-385.2	295999
Sum of e	lectronic and	thermal Ene	ergies=	-385.2	287252
Sum of e	lectronic and	thermal Ent	halpies=	-385.2	286308
Sum of e	lectronic and	thermal Fre	ee Energies=	-385.3	330935

TS

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	22	0	-1.801201	-0.186800	0.056143
2	17	0	-1.339478	1.762793	-1.561879
3	8	0	-0.239764	0.746654	1.080585
4	1	0	-0.374438	1.685322	0.845892
5	6	0	2.046954	1.170422	-0.339938
6	6	0	3.243052	0.355722	0.058010
7	6	0	3.742183	0.427886	1.371607
8	6	0	3.866552	-0.510300	-0.855853
9	6	0	4.846051	-0.329411	1.754648
10	6	0	4.975607	-1.262463	-0.471266
11	6	0	5.469803	-1.175673	0.832885
12	6	0	2.156070	2.680139	-0.063434
13	8	0	1.669226	0.899343	-1.649599
14	1	0	3.254687	1.070171	2.099937
15	1	0	3.479880	-0.573340	-1.866433
16	1	0	5.218702	-0.263080	2.773172
17	1	0	5.456295	-1.918158	-1.192386
18	1	0	6.332120	-1.765821	1.130977
19	1	0	2.962731	3.102554	-0.672898

S24

20	1	0	1.219839	3.178191	-0.337014
21	1	0	2.368652	2.884796	0.989670
22	1	0	0.789169	1.323089	-1.805683
23	1	0	1.157820	0.809568	0.352918
24	6	0	-3.048115	1.473678	1.261772
25	6	0	-2.782537	0.431787	2.202448
26	6	0	-3.463112	-0.721328	1.768671
27	6	0	-4.176453	-0.391302	0.576859
28	6	0	-3.918242	0.963164	0.266249
29	1	0	-2.661073	2.483092	1.298533
30	1	0	-2.135093	0.506056	3.065441
31	1	0	-3.446597	-1.688782	2.253032
32	1	0	-4.801483	-1.062785	0.002746
33	1	0	-4.278476	1.503187	-0.598029
34	6	0	-0.033685	-1.753754	-0.526995
35	6	0	-0.669265	-1.385258	-1.737215
36	6	0	-2.015146	-1.822450	-1.684106
37	6	0	-2.202310	-2.480978	-0.437088
38	6	0	-0.983391	-2.417073	0.290327
39	1	0	0.991599	-1.538679	-0.260879
40	1	0	-0.215249	-0.823577	-2.539056
41	1	0	-2.761627	-1.681774	-2.455030
42	1	0	-3.115001	-2.953585	-0.100838
43	1	0	-0.804695	-2.819133	1.279355
Zero-poin	t correction=			0.343633	
(Hartree/	Particle)				
Thermal	correction to	Energy=		0.366004	
Thermal	correction to	Enthalpy=		0.366948	
Thermal	correction to	Gibbs Free	Energy=	0.289795	
Sum of e	lectronic and	zero-point	Energies=	-1366.9	971651
Sum of e	electronic and	thermal Ene	rgies=	-1366.9	949280
Sum of e	electronic and	thermal Ent	halpies=	-1366.9	948336
Sum of e	electronic and	thermal Fre	e Energies=	-1367.0	025488

Cp₂TiCl(OH)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	22	0	0.003990	0.055320	0.228722
2	8	0	0.088047	0.252776	2.074418
3	17	0	-0.012283	2.374195	-0.298695
4	1	0	-0.739305	0.535521	2.493259
5	6	0	-2.417853	0.163613	0.472569
6	6	0	-2.016734	-1.149945	0.819545
7	6	0	-1.463396	-1.755942	-0.331255
8	6	0	-1.557096	-0.822176	-1.406511
9	6	0	-2.157121	0.351545	-0.908810
10	1	0	-2.835965	0.908678	1.137225
11	1	0	-2.058393	-1.595086	1.804830
12	1	0	-1.064199	-2.759184	-0.389758
13	1	0	-1.230942	-0.982834	-2.424922
14	1	0	-2.323926	1.262659	-1.462847
15	6	0	2.252210	-0.662966	0.884605
16	6	0	2.398393	0.443258	0.028704
17	6	0	1.911244	0.073573	-1.260380
18	6	0	1.458319	-1.258120	-1.186621
19	6	0	1.626699	-1.705111	0.157235
20	1	0	2.451027	-0.668309	1.946119
21	1	0	2.752427	1.424374	0.309852
22	1	0	1.863058	0.720320	-2.125643

23	1	0	1.035503	-1.833180	-1.998641
24	1	0	1.359377	-2.678689	0.546643
Zero-point	correction=			0.184905	
(Hartree/Pa	rticle)				
Thermal co	rrection to	Energy=		0.197771	
Thermal co	rrection to	Enthalpy=		0.198716	
Thermal co	rrection to	Gibbs Free	Energy=	0.145377	
Sum of ele	ctronic and	zero-point	Energies=	-981.3	115351
Sum of ele	ctronic and	thermal Ene	ergies=	-981.3	102484
Sum of ele	ctronic and	thermal Ent	halpies=	-981.3	101540
Sum of ele	ctronic and	thermal Fre	ee Energies=	-981.3	154879

1-Phenyletanol (4)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.709346	-1.229189	-0.350887	
2	6	0	1.778394	1.252580	0.327144	
3	6	0	-0.151013	-0.142722	-0.151702	
4	6	0	2.089899	-1.081792	-0.205994	
5	6	0	2.628467	0.161235	0.133392	
6	6	0	0.398132	1.101286	0.186254	
7	6	0	-1.658846	-0.314026	-0.273821	
8	6	0	-2.319756	-0.599064	1.075908	
9	8	0	-2.294568	0.858030	-0.785122	
10	1	0	0.295041	-2.197693	-0.624993	
11	1	0	2.191104	2.223979	0.587642	
12	1	0	2.744736	-1.934479	-0.366248	
13	1	0	3.703401	0.279577	0.241259	
14	1	0	-0.266936	1.948222	0.329206	
15	1	0	-1.855319	-1.168235	-0.943576	
16	1	0	-2.128457	0.225458	1.770600	
17	1	0	-3.402223	-0.702570	0.946923	
18	1	0	-1.924103	-1.521520	1.512822	
19	1	0	-1.848430	1.093172	-1.614429	
Zero-point (Hartree/I	correction=			0.161902		
Thermal of	correction to	Energy=		0.170181		
Thermal of	correction to	Enthalpy=		0.171125		
Thermal correction to Gibbs Free Energy=				0.128784		
Sum of electronic and zero-point Energies=			-385.920160			
Sum of electronic and thermal Energies=			raies=	-385.911882		
Sum of electronic and thermal Entryles-			halpies=	-385,910937		
Sum of el	lectronic and	l thermal Fre	e Energies=	-385.9	953279	
			5			