# Supplementary Material (ESI) for Dalton Transactions # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full 'Dalton Trans.' _journal_coden_Cambridge 0222 _publ_contact_author_name 'OHare, Dermot' _publ_contact_author_email dermot.ohare@chem.ox.ac.uk _publ_section_title ; Bis(permethylpentalene)uranium ; _publ_contact_author ; Prof. D O'Hare Inorganic Chemistry Laboratory University of Oxford South Parks Road Oxford OX1 3QR UK ; _publ_contact_author_phone '+44 1865 285130' loop_ _publ_author_name D.OHare F.Chadwick A.Ashley J.Goicoechea G.Wildgoose # Attachment '- mc002.cif' data_mc002 _database_code_depnum_ccdc_archive 'CCDC 767245' #TrackingRef '- mc002.cif' #============================================================= # Diffractometer details #============================================================= _diffrn_measurement_device_type ; Nonius KappaCCD ; _diffrn_radiation_monochromator graphite _computing_data_collection ; KappaCCD software 'Collect' (Nonius, 2000) ; _computing_data_reduction ; KappaCCD software 'DENZO' (Otwinowski & Minor, 1996) ; _computing_cell_refinement ; KappaCCD software 'DENZO' (Otwinowski & Minor, 1996) ; #============================================================= # General computing #============================================================= _computing_structure_refinement ; SHELXL (Sheldrick, 1997) ; _computing_publication_material ; XCIF (Sheldrick, 2001) ; _chemical_absolute_configuration unk _exptl_crystal_thermal_history ; The material was crystallised at ambient temperature. A suitable crystal was cooled to 150K at a rate of 120 Khr^-1^ for single-crystal X-ray diffraction analysis. ; _diffrn_special_details ; An isostructural analogue of this sample containing cerium instead of uranium has been previously reported by the O'Hare group in the chemical literature. Similar procedures to those employed for the structural elucidation of the cerium analogue were employed on this sample. A preliminary indexing of the diffraction pattern suggested a primitive trigonal cell with a = b = 9.51, c = 22.11 Angstrom. However, it was observed that those reflections for which neither h-k+l nor k-h+l were a multiple of 3 were systematically absent. This was interpreted as being due to twinning of a rhombohedral crystal by a 180 degree rotation about the crystallographic threefold axis of rotation (ie the c axis of the trigonal setting). The corresponding twin law (in the trigonal setting) is: (h') (-1 0 0) (h) (k') = (0 -1 0).(k) (l') (0 0 1) (l) The intensities of symmetry-related reflections appeared to indicate the Laue group of the crystal to be -3m, altough the possiblity of the true symmetry being lower, with the apparently equivalent reflections resulting from additional twinning or pseudosymmetry was also considered (see below). ; _refine_ls_matrix_type full _atom_sites_solution_primary heavy _atom_sites_solution_secondary difmap # The structure was solved by positioning the U atom on a special position # taking into consideration the number of molecules in the unit cell (see # below). C atoms were located in Fourier maps. _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment noref _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2\s(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The unit-cell volume is consistent with the presence of 3 molecules in the (trigonal) cell, requiring the molecule to be disordered. Initial attempts to model the structure in the space group R -3 m with the U atom on the origin (Wyckoff site a, point symmetry -3 m) gave moderately good agreeement with the diffraction data and the isotropic displacement parameter and contribution of the two twin components were refined. However, attempts to use the resulting phases to generate a Fourier map gave an uninterpretable result. The structure was then modelled in the subgroup R 3 m and R 3 2. The U atom was positioned on the origin (Wyckoff sites a, point symmetries 3 m and 3 2 respectively), with the displacement parameter obtained previously. The resulting Fourier map was again uninterpretable for the former space group, but that obtained in R 3 2 showed peaks identifiable as ligand C atoms, disordered over three symmetry-related orientations. The initial observed Fourier map led to the location of 5 of the directly coordinated C atoms. The remaining C atoms were located in difference Fourier maps. The molecule was subsequently translated to a site within the unit cell for ease of visualisation. In subsequent refinement, it was assumed that the local geometry of the ligand has mm2 symmetry, with the U atom on the axis of rotation. Similarity restraints were applied to the equivalent bond lengths and angles about C (su's of 0.02 Angstrom and 2 degrees respectively). Similarity restraints were applied to the displacement parameters of directly-bonded pairs of C atoms. Attempts to displace the U atom from the special position led to highly-unstable refinement and were abandoned. As this implies that the U sublattice retains the centrosymmetric space group R -3 m, Friedel pairs of reflections were merged and no attempt was made to determine the absolute structure of the crystal. Hydrogen atoms were positioned geometrically, assuming an arbitrary orientation with respect to the C-C axis. Attempts to refine the structure in the lower symmetry space groups R 3 and C 2 with the additional apparent symmetry assumed to be due to twinning led to models that agreed less well with the diffraction data and were abandoned. ; #============================================================= _audit_creation_method SHELXL-97 _chemical_name_systematic ; U(Pn*)2 ; _contact_author_fax '+44 1865 272690' _chemical_name_common U(Pn*)2 _chemical_melting_point ? _chemical_formula_moiety 'C28 H36 U' _chemical_formula_sum 'C28 H36 U' _chemical_formula_weight 610.60 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' U U -9.6767 9.6646 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Trigonal _symmetry_space_group_name_H-M 'R 3 2 ' _symmetry_space_group_name_Hall 'R 3 2"' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z' 'x-y, -y, -z' '-x, -x+y, -z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+1/3' 'x-y+2/3, -y+1/3, -z+1/3' '-x+2/3, -x+y+1/3, -z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+2/3' 'x-y+1/3, -y+2/3, -z+2/3' '-x+1/3, -x+y+2/3, -z+2/3' _cell_length_a 9.5146(3) _cell_length_b 9.5146(3) _cell_length_c 22.1090(9) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 1733.33(10) _cell_formula_units_Z 3 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 59361 _cell_measurement_theta_min 5.097 _cell_measurement_theta_max 27.485 _exptl_crystal_description plate _exptl_crystal_colour black _exptl_crystal_size_max 0.32 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas 'not measured' _exptl_crystal_density_diffrn 1.755 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 888 _exptl_absorpt_coefficient_mu 7.035 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.2118 _exptl_absorpt_correction_T_max 0.6030 _exptl_absorpt_process_details ; Denzo/Scalepack (Otwinowski & Minor, 1996) ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 150(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_measurement_method 'omega scans' _diffrn_detector_area_resol_mean . _diffrn_standards_number . _diffrn_standards_interval_count . _diffrn_standards_interval_time . _diffrn_standards_decay_% . _diffrn_reflns_number 1757 _diffrn_reflns_av_R_equivalents 0.0295 _diffrn_reflns_av_sigmaI/netI 0.0377 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -28 _diffrn_reflns_limit_l_max 27 _diffrn_reflns_theta_min 5.10 _diffrn_reflns_theta_max 27.49 _reflns_number_total 890 _reflns_number_gt 890 _reflns_threshold_expression >2\s(I) _refine_ls_structure_factor_coef Fsqd _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0545P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0102(10) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.45(6) _refine_ls_number_reflns 890 _refine_ls_number_parameters 131 _refine_ls_number_restraints 90 _refine_ls_R_factor_all 0.0313 _refine_ls_R_factor_gt 0.0313 _refine_ls_wR_factor_ref 0.0730 _refine_ls_wR_factor_gt 0.0730 _refine_ls_goodness_of_fit_ref 1.091 _refine_ls_restrained_S_all 1.053 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group U1 U 0.6667 0.3333 0.8333 0.0374(3) Uani 1 6 d S . . C1 C 0.483(4) 0.350(4) 0.7416(9) 0.030(8) Uani 0.33 1 d PDU . . C2 C 0.414(4) 0.181(4) 0.7485(7) 0.056(15) Uani 0.33 1 d PDU . . C3 C 0.530(3) 0.131(4) 0.7398(8) 0.046(12) Uani 0.33 1 d PDU . . C4 C 0.680(3) 0.270(3) 0.7266(7) 0.034(10) Uani 0.33 1 d PD . . C5 C 0.845(3) 0.321(3) 0.7405(9) 0.043(12) Uani 0.33 1 d PDU . . C6 C 0.917(3) 0.491(3) 0.7495(8) 0.032(7) Uani 0.33 1 d PDU . . C7 C 0.806(3) 0.549(4) 0.7437(10) 0.028(8) Uani 0.33 1 d PDU . . C8 C 0.650(3) 0.421(5) 0.7265(8) 0.058(16) Uani 0.33 1 d PDU . . C9 C 0.392(5) 0.436(5) 0.7467(17) 0.054(9) Uani 0.33 1 d PDU . . H9A H 0.2776 0.3614 0.7367 0.081 Uiso 0.33 1 calc PR . . H9B H 0.4368 0.5277 0.7187 0.081 Uiso 0.33 1 calc PR . . H9C H 0.3998 0.4752 0.7882 0.081 Uiso 0.33 1 calc PR . . C10 C 0.243(3) 0.066(5) 0.7619(13) 0.053(7) Uani 0.33 1 d PD . . H10A H 0.2286 -0.0430 0.7668 0.079 Uiso 0.33 1 calc PR . . H10B H 0.1754 0.0656 0.7286 0.079 Uiso 0.33 1 calc PR . . H10C H 0.2122 0.0984 0.7994 0.079 Uiso 0.33 1 calc PR . . C11 C 0.485(6) -0.039(3) 0.7434(15) 0.095(16) Uani 0.33 1 d PDU . . H11A H 0.5834 -0.0479 0.7410 0.143 Uiso 0.33 1 calc PR . . H11B H 0.4129 -0.0984 0.7098 0.143 Uiso 0.33 1 calc PR . . H11C H 0.4299 -0.0844 0.7818 0.143 Uiso 0.33 1 calc PR . . C12 C 0.931(5) 0.231(5) 0.7457(15) 0.057(9) Uani 0.33 1 d PD . . H12A H 0.8528 0.1140 0.7458 0.086 Uiso 0.33 1 calc PR . . H12B H 0.9933 0.2604 0.7835 0.086 Uiso 0.33 1 calc PR . . H12C H 1.0053 0.2570 0.7113 0.086 Uiso 0.33 1 calc PR . . C13 C 1.088(4) 0.602(6) 0.7633(14) 0.061(9) Uani 0.33 1 d PD . . H13A H 1.1402 0.5382 0.7737 0.092 Uiso 0.33 1 calc PR . . H13B H 1.0969 0.6709 0.7976 0.092 Uiso 0.33 1 calc PR . . H13C H 1.1420 0.6694 0.7280 0.092 Uiso 0.33 1 calc PR . . C14 C 0.854(9) 0.719(5) 0.7496(17) 0.11(2) Uani 0.33 1 d PDU . . H14A H 0.9724 0.7856 0.7449 0.164 Uiso 0.33 1 calc PR . . H14B H 0.8230 0.7384 0.7896 0.164 Uiso 0.33 1 calc PR . . H14C H 0.8007 0.7483 0.7183 0.164 Uiso 0.33 1 calc PR . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 U1 0.0374(3) 0.0374(3) 0.0375(3) 0.000 0.000 0.01868(14) C1 0.038(16) 0.027(15) 0.022(10) -0.008(9) -0.022(9) 0.014(13) C2 0.017(13) 0.09(3) 0.036(11) 0.001(15) -0.003(8) 0.01(2) C3 0.05(2) 0.036(14) 0.054(14) 0.006(11) -0.006(10) 0.021(12) C4 0.05(3) 0.010(11) 0.025(10) 0.000(6) -0.005(7) 0.003(19) C5 0.033(16) 0.027(19) 0.08(2) 0.014(13) 0.005(11) 0.025(15) C6 0.030(10) 0.045(11) 0.032(8) 0.007(6) 0.004(6) 0.027(7) C7 0.029(16) 0.028(14) 0.039(10) 0.002(8) 0.009(7) 0.024(8) C8 0.037(19) 0.09(4) 0.017(10) 0.031(15) 0.005(10) 0.01(3) C9 0.063(17) 0.06(2) 0.052(18) -0.001(14) -0.027(13) 0.044(16) C10 0.040(15) 0.078(17) 0.032(15) 0.009(12) -0.009(11) 0.024(14) C11 0.08(3) 0.08(3) 0.052(16) 0.001(17) -0.01(3) -0.02(3) C12 0.069(19) 0.09(3) 0.048(16) -0.014(16) -0.005(14) 0.06(2) C13 0.050(18) 0.07(2) 0.05(2) 0.009(15) 0.010(14) 0.023(16) C14 0.15(5) 0.10(3) 0.034(16) 0.000(17) 0.00(5) 0.03(4) _geom_special_details ; All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag U1 C4 2.455(19) . ? U1 C8 2.54(2) . ? U1 C3 2.67(2) . ? U1 C7 2.68(3) . ? U1 C5 2.70(2) . ? U1 C1 2.74(2) . ? U1 C6 2.79(2) . ? U1 C2 2.82(2) . ? C1 C2 1.412(19) . ? C1 C8 1.426(19) . ? C1 C9 1.457(19) . ? C2 C3 1.419(18) . ? C2 C10 1.460(18) . ? C3 C4 1.402(18) . ? C3 C11 1.455(18) . ? C4 C5 1.426(19) . ? C4 C8 1.60(5) . ? C5 C6 1.423(19) . ? C5 C12 1.463(18) . ? C6 C7 1.415(18) . ? C6 C13 1.46(2) . ? C7 C8 1.421(18) . ? C7 C14 1.455(19) . ? C9 H9A 0.9800 . ? C9 H9B 0.9800 . ? C9 H9C 0.9800 . ? C10 H10A 0.9800 . ? C10 H10B 0.9800 . ? C10 H10C 0.9800 . ? C11 H11A 0.9800 . ? C11 H11B 0.9800 . ? C11 H11C 0.9800 . ? C12 H12A 0.9800 . ? C12 H12B 0.9800 . ? C12 H12C 0.9800 . ? C13 H13A 0.9800 . ? C13 H13B 0.9800 . ? C13 H13C 0.9800 . ? C14 H14A 0.9800 . ? C14 H14B 0.9800 . ? C14 H14C 0.9800 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C4 U1 C8 37.2(12) . . ? C4 U1 C3 31.3(5) . . ? C8 U1 C3 55.1(12) . . ? C4 U1 C7 53.9(8) . . ? C8 U1 C7 31.5(5) . . ? C3 U1 C7 81.6(9) . . ? C4 U1 C5 31.7(5) . . ? C8 U1 C5 56.6(12) . . ? C3 U1 C5 58.1(6) . . ? C7 U1 C5 52.3(7) . . ? C4 U1 C1 54.1(9) . . ? C8 U1 C1 31.1(5) . . ? C3 U1 C1 51.3(7) . . ? C7 U1 C1 59.5(7) . . ? C5 U1 C1 82.7(8) . . ? C4 U1 C6 50.2(8) . . ? C8 U1 C6 51.7(8) . . ? C3 U1 C6 81.4(7) . . ? C7 U1 C6 29.9(4) . . ? C5 U1 C6 30.0(5) . . ? C1 U1 C6 82.8(8) . . ? C4 U1 C2 50.8(8) . . ? C8 U1 C2 51.0(8) . . ? C3 U1 C2 29.8(4) . . ? C7 U1 C2 82.5(7) . . ? C5 U1 C2 82.2(8) . . ? C1 U1 C2 29.4(4) . . ? C6 U1 C2 96.6(6) . . ? C2 C1 C8 110(3) . . ? C2 C1 C9 124(3) . . ? C8 C1 C9 126(4) . . ? C2 C1 U1 78.4(10) . . ? C8 C1 U1 66.7(10) . . ? C9 C1 U1 123.4(11) . . ? C1 C2 C3 112(2) . . ? C1 C2 C10 126(2) . . ? C3 C2 C10 123(2) . . ? C1 C2 U1 72.2(10) . . ? C3 C2 U1 69.6(12) . . ? C10 C2 U1 126.4(10) . . ? C4 C3 C11 131(3) . . ? C2 C3 C11 121(3) . . ? C4 C3 U1 65.6(11) . . ? C2 C3 U1 80.6(12) . . ? C11 C3 U1 121.6(11) . . ? C3 C4 C5 135(2) . . ? C3 C4 C8 107(3) . . ? C5 C4 C8 111(2) . . ? C3 C4 U1 83.0(12) . . ? C5 C4 U1 83.7(10) . . ? C8 C4 U1 74.1(11) . . ? C6 C5 C4 104(2) . . ? C6 C5 C12 124(3) . . ? C4 C5 C12 132(3) . . ? C6 C5 U1 78.5(10) . . ? C4 C5 U1 64.6(9) . . ? C12 C5 U1 121.0(11) . . ? C7 C6 C5 113(2) . . ? C7 C6 C13 121(3) . . ? C5 C6 C13 125(3) . . ? C7 C6 U1 70.6(12) . . ? C5 C6 U1 71.5(10) . . ? C6 C7 C14 123(3) . . ? C8 C7 C14 126(3) . . ? C6 C7 U1 79.5(13) . . ? C8 C7 U1 68.8(11) . . ? C14 C7 U1 123.2(17) . . ? C7 C8 C1 141(3) . . ? C7 C8 C4 101(3) . . ? C1 C8 C4 104(3) . . ? C7 C8 U1 79.7(12) . . ? C1 C8 U1 82.3(10) . . ? C4 C8 U1 68.6(13) . . ? C1 C9 H9A 109.5 . . ? C1 C9 H9B 109.5 . . ? H9A C9 H9B 109.5 . . ? C1 C9 H9C 109.5 . . ? H9A C9 H9C 109.5 . . ? H9B C9 H9C 109.5 . . ? C2 C10 H10A 109.5 . . ? C2 C10 H10B 109.5 . . ? H10A C10 H10B 109.5 . . ? C2 C10 H10C 109.5 . . ? H10A C10 H10C 109.5 . . ? H10B C10 H10C 109.5 . . ? C3 C11 H11A 109.5 . . ? C3 C11 H11B 109.5 . . ? H11A C11 H11B 109.5 . . ? C3 C11 H11C 109.5 . . ? H11A C11 H11C 109.5 . . ? H11B C11 H11C 109.5 . . ? C5 C12 H12A 109.5 . . ? C5 C12 H12B 109.5 . . ? H12A C12 H12B 109.5 . . ? C5 C12 H12C 109.5 . . ? H12A C12 H12C 109.5 . . ? H12B C12 H12C 109.5 . . ? C6 C13 H13A 109.5 . . ? C6 C13 H13B 109.5 . . ? H13A C13 H13B 109.5 . . ? C6 C13 H13C 109.5 . . ? H13A C13 H13C 109.5 . . ? H13B C13 H13C 109.5 . . ? C7 C14 H14A 109.5 . . ? C7 C14 H14B 109.5 . . ? H14A C14 H14B 109.5 . . ? C7 C14 H14C 109.5 . . ? H14A C14 H14C 109.5 . . ? H14B C14 H14C 109.5 . . ? _diffrn_measured_fraction_theta_max 0.989 _diffrn_reflns_theta_full 27.49 _diffrn_measured_fraction_theta_full 0.989 _refine_diff_density_max 3.343 _refine_diff_density_min -1.008 _refine_diff_density_rms 0.171 # start Validation Reply Form _vrf_PLAT940_mc002 ; PROBLEM: F**2 Refinement with I .GT. n * Sigma(I) only RESPONSE: No data were omitted for the determination of this structure. All data have a I > 2sigma(I). ;