A highly pH-sensitive Zn(II) chemosensor

Carla Bazzicalupi, Andrea Bencini, Silvia Biagini, Enrico Faggi, Giovanna Farruggia, Giulia Andreani, Paola Gratteri, Luca Prodi, Alessio Spepi, Barbara Valtancoli

Electronic Supporting Information

Page 2. Experimental details for H₂L

Page 3. Figure S1. Absorption spectra of 2’,7’-dichlorofluorescein in aqueous solution at different pH values

Page 3. Figure S2. Fluorescence emission spectra of 2’,7’-dichlorofluorescein in aqueous solution at different pH values

Page 4. Figure S3. Minimized conformations of [CdL(H₂O)] complex.

Page 5. Figure S4. pH dependence of the absorbance at 505 nm (Cd(II), Pb(II)) or 498 nm (Cu(II)) as a function of pH compared to the distribution curves of the complexes for a system containing H₂L and Cd(II) (a) Pb(II) (b) or Cu(II) (c) in 1:1 molar ratio

Page 6. Figure S5. ESI mass spectra recorded on aqueous solution containing H₂L and Zn(II) in 1:1 (a) and 1:2 (b) molar ratios.

Page 7. Figure S6. Fluorescence emission intensity at 525 nm as a function of pH compared to the distribution curves of the Cu(II) (a) or Pb(II) (b) complexes for systems containing H₂L and Cu(II) or Pb(II) in 1:1 molar ratio

Page 8. Figure S7. Flow cytometric evaluation of the intracellular fluorescence distribution in unstained HL60 cells, H₂L incubated cells and H₂L incubated, digitonin permeabilized cells.
Synthesis of H$_2$L.

2,7-dichloro-4,5-bis(bis-(N-N’-phtalimide-ethylenamino)aminomethyl)-fluorescein (1)
Paraformaldehyde (1.20 g, 39.8 mmol) was added to a suspension of bis-phthalimide-diethylenetriamine (13.6 g, 37.3 mmol) in 170 ml of MeCN, and then stirred under reflux at 60°C for 30 min, before addition of a suspension of 2’,7’-dichlorofluorescein (5.0 g, 12.4 mmol) in 80 ml of MeCN:H$_2$O (1:1). After being stirred overnight at 60°C, the mixture was allowed to cool to room temperature. Solvent removal in vacuum afforded a red solid residue, which was suspended in CH$_2$Cl$_2$ and filtered. Purification by chromatography on silica (100:3 CH$_2$Cl$_2$:MeOH, Rf=0.5) gave a pale pink powder (3.50 g, 3.04 mmol, 25% yield).

1H-NMR (CDCl$_3$, 300MHz): δ 7.89 (d, $J = 7.1$ Hz, 1H), 7.63-7.56 (m, 19H), 6.39 (s, 2H), 4.28 (s, 4H), 3.87 (m, 8H), 3.03 (m, 8H). 13C-NMR (CDCl$_3$, 75 MHz): δ 168.1, 155.2, 147.7, 135.2, 133.9, 133.6, 131.9, 130.0, 127.6, 126.6, 125.1, 124.2, 123.3, 123.0, 117.0, 110.4, 108.9, 51.3, 50.6, 34.4. Elemental analysis calcd. for C$_{62}$H$_{46}$Cl$_2$N$_6$O$_{13}$: C: 64.53, H: 4.02, N: 7.28; found: C: 64.4, H: 4.0, N: 7.4.

2,7-dichloro-4,5-bis(ethylenamino)aminomethyl)-fluorescein (H$_2$L)
Hydrazine monohydrate (50%, 40 ml) was added to a suspension of 1 (750 mg, 0.65 mmol) in 400 ml of EtOH and after few minutes the formation of a red precipitate is observed. The mixture was refluxed for 12 h in the dark, cooled to room temperature, filtered, washed with EtOH and dried under vacuum in presence of KOH, yielding 290 mg (0.44 mmol, 67% yield) of a deep red solid.

1H-NMR (D$_2$O, pH 2, 300 MHz) : δ 7.66 (d, $J = 6.6$Hz, 1H), 7.25 (t, $J = 6.5$ Hz, 2H), 6.87 (d, $J = 6.6$ Hz, 1H), 6.74 (s, 2H), 4.43 (s, 4H), 3.39 (t, $J = 7.1$ Hz, 8H), 3.10 (t, $J = 7.1$ Hz, 8H). 13C-NMR (D$_2$O, pH 2, 75 MHz): δ 168.9, 163.2, 152.2, 138.6, 134.4, 130.9, 129.3, 128.2, 127.9, 123.1, 114.4, 104.8, 50.6, 49.7, 34.1. ESI-MS [H$_2$L+H]$^+$, 632. Elemental analysis calcd. for C$_{30}$H$_{36}$Cl$_2$N$_6$O$_5$·2H$_2$O: C: 53.97, H: 6.04, N: 12.59; found: C: 53.49, H: 5.89, N: 12.79.
Figure S1. Absorption spectra of 2’,7’-dichlorofluorescein in aqueous solution at different pH values ([2’,7’-dichlorofluorescein] = 1.67 x 10^{-5} M)

Figure S2. Fluorescence emission spectra of 2’,7’-dichlorofluorescein in aqueous solution at different pH values ([2’,7’-dichlorofluorescein] = 3.25 x 10^{-7} M, λ_{exc} 472 nm).
Figure S3. Minimized conformations of [CdL(H$_2$O)] complex. Bond distances (Å): Cd-N1, 2.408; Cd-N2, 2.415; Cd-N3, 2.392; Cd-O1, 2.158; Cd-Ow1, 2.377.
Figure S4. pH dependence of the absorbance at 505 nm (Cd(II), Pb(II)) or 498 nm (Cu(II)) as a function of pH compared to the distribution curves of the complexes (solid curves, left y axis) for a system containing H₂L and Cd(II) (a) Pb(II) (b) or Cu(II) (c) in 1:1 molar ratio. In the case of Cu(II), metal complexation occurs at low pH values and the UV-vis spectra display a band centered at 498 nm, which remains almost unaltered in the pH range 3.5-12.
Figure S5. ESI mass spectra recorded on an aqueous solution containing H₂L and Zn(II) in 1:1 (a) and 1:2 (b) molar ratios.
Figure S6. Fluorescence emission intensity at 525 nm (■, right y axis) as a function of pH compared to the distribution curves of the Cu(II) (a) or Pb(II) (b) complexes (solid curves, left y axis) for systems containing H₂L and Cu(II) or Pb(II) in 1:1 molar ratio ([H₂L] = [Cu(II)] = [Pb(II)] = 2 × 10⁻⁷ M, λ_{exc} 472 nm, 298 K, 0.1 M NMe₄Cl).
Figure S7. Flow cytometric evaluation of the intracellular fluorescence distribution in unstained HL60 cells (black line), H$_2$L incubated cells (thick grey line) and H$_2$L incubated, digitonin permeabilized cells (thin grey line). Abscissa: cellular fluorescence intensity displayed on a logarithmic scale, ordinate: number of cells per channel.