Electronic Supplemental Information (ESI) to accompany the manuscript

“Differences between the macroscopic and tracer level chemistry of rhenium and technetium: Contrasting cage isomerisation behaviour of Re(I) and Tc(I) carborane complexes”

Andrea F. Armstrong† and John F. Valliant‡1

† McMaster Institute for Applied Radiation Sciences, McMaster University
‡ Departments of Chemistry and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada, L8S 4M1

1 To whom correspondence should be addressed
Telephone: +1-905-525-9140 x22840
Fax: +1-905-522-7776
E-mail: valliant@mcmaster.ca
Experimental

Materials and Methods

Caution! The radiometals 99mTc ($t_\frac{1}{2} = 6.0$ h; $E_\gamma = 140$ keV) and $^{186/188}$Re (186Re, $t_\frac{1}{2} = 3.7$ d, $E_\beta = 1.07$ MeV; 188Re, $t_\frac{1}{2} = 16.9$ h; $E_\beta = 2.12$ MeV) must only be used in a licensed facility with adequate shielding. Sodium pertechnetate [Na]99mTcO$_4$ was obtained from a commercial 99Mo/99mTc generator (Lantheus Medical Imaging Inc.) while [$^{186/188}$ReO$_4$]$^-$ (> 350 GBq/mg) was provided by the McMaster Nuclear Reactor; conversion to [M(CO)$_3$(H$_2$O)$_3$]$^+$ (M = 99mTc, $^{186/188}$Re) was accomplished according to the literature procedures.1 All radiochemical experiments were carried out under an inert (argon) atmosphere. The $nido$-carborane ligands and non-radioactive $closo$-rhenacarboranes, used as HPLC standards for the identification of the analogous 99mTc-carboranes, were prepared as described previously.2 Aqueous tetraethylammonium phosphate (TEAP, pH 2.5), employed as an HPLC mobile phase, was prepared by combining concentrated phosphoric acid (85%, 5.5 mL, 80 mmol) and triethylamine (7.0 mL, 5.1 g, 50 mmol) in water (1.0 L).

In a typical 99mTc radiolabelling experiment, a stock solution of the $nido$-carborane (1a-1c, 3 - 12 mM) in deoxygenated EtOH$_{aq}$ (10 % v/v) was distributed into several Emry vials. A saline solution of [99mTc(CO)$_3$(H$_2$O)$_3$]$^+$ (0.1-1.0 mL, 50-150 MBq) was added to each vial of ligand solution (final concentration 2-10 mM) and the reaction mixture was heated using the specified conditions (5 min at 100, 120, 140, 160, 180 and 200 °C; additional experiments with 1a were also conducted at lower temperatures).

Experiments with $^{186/188}$Re were conducted in a similar manner, combining aliquots of a stock solution of [Na]$[nido$-C$_3$B$_9$H$_{12}]$ (1a, 0.5 mL, 20-22 mM) with [$^{186/188}$Re(CO)$_3$(H$_2$O)$_3$]$^+$ (0.3-0.4 mL, 1.5-4.5 MBq) at pH 7.4 and diluting with EtOH$_{aq}$ (10 % v/v) to a final ligand concentration of 7.8-8.8 mM. Reactions were heated for 5 min at 100, 120, 140, 160, 180 and 200 °C and analysed by radio-HPLC. Where applicable, reaction mixtures were purified using a C-18 solid phase extraction cartridge (1.6 mL, Waters) pre-treated by flushing with H$_2$O (10 mL), MeOH (10 mL) and again with H$_2$O (10 mL).
Instrumentation

Microwave-assisted reactions were conducted utilizing a Biotage Initiator 8 microwave reactor. Radioactivity was measured using a Capintec CRC-15W dose calibrator. High Performance Liquid Chromatography (HPLC) data were obtained using a Varian Pro Star 330 PDA detector operating at $\lambda = 254$ nm with a model 230 solvent delivery system and an in-line β-RAM Radio-HPLC detector (IN/US Systems, Model 3). A Nucleosil C-18 HPLC column (4.6 mm x 25 mm) operating at a flow-rate of 1.0 mL/min with a sample volume of 100 μL was used for all analyses. The following solvent gradients were employed: **Method A** (Solvent A = TEAP, Solvent B = MeOH) 0-3 min, 100% A; 3-6 min, 0% B to 25% B; 6-9 min, 25% B to 33% B; 9-20 min, 33% B to 100% B; 20-22 min, 100% B; 22-25 min, 100% B to 100% A; 25-30 min, 100% A; **Method B** (Solvent A = TEAP, Solvent B = MeOH) 0-15 min, 70-90% B.

References