Electronic Supporting Information

for

A Rhodamine-based Chemosensor for Cu$^{2+}$ and Its Application in Bioimaging

Liang Huanga, Xiao Wangb, GuoQiang Xiea, PinXian Xia, ZhengPeng Lia, Min Xua, YongJie Wub, DeCheng Baib, ZhengZhi Zenga

aState Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, P. R. China
bPharmacology Lab of GanSu Province Key Laboratory of Preclinical Study for New Traditional Chinese Medicine, Lanzhou University, 730000 Lanzhou, P. R. China.

Email: zengzhzh@yahoo.com.cn

Table of contents

1. Instruments and experimental procedures
2. Synthesis routes and characteristic data
3. Supplementary spectra data
4. NMR spectra

1. Instruments, reagents and experimental procedures

1H and 13C NMR spectra were taken on a Varian mercury-400 spectrometer with TMS as an internal standard and CDCl$_3$ as solvent. Absorption spectra were determined on a Varian UV-Cary100 spectrophotometer. Fluorescence spectra measurements were performed on a Hitachi F-4500 spectrofluorimeter. All pH measurements were made with a pH-10C digital pH meter. HRMS were determined on a Bruker Daltonics APEXII 47e FT-ICR spectrometer.

All the materials for synthesis were purchased from commercial suppliers and used without further purification. Methanol for spectra detection was HPLC reagent without fluorescent impurity.
Procedures of metal ion sensing

Stock solutions of the metal ions (2.5 mM) were prepared in deionized water. A stock solution of L1 (1 mM) was prepared in DMF: CH₃CN (1:1 v/v). The solution of L1 was then diluted to 20 μM with water/ CH₃CN (1:1 v/v). In titration experiments, each time a 2 mL solution of I (20μM) was filled in a quartz optical cell of 1 cm optical path length, and the Cu²⁺ stock solution was added into the quartz optical cell gradually by using a micro-pipet. Spectral data were recorded at 2 min after the addition. In selectivity experiments, the test samples were prepared by placing appropriate amounts of metal ion stock into 2 mL solution of L1 (20μM). For fluorescence measurements, excitation was provided at 495nm, and emission was collected from 508 to 650 nm.

Cell Culture

The EJ cell line was provided by Institute of Biochemistry and Cell Biology (China). Cells were grown in H-DMEM (Dulbecco’s Modified Eagle’s Medium, High Glucose) supplemented with 10 % FBS (Fetal Bovine Serum) in an atmosphere of 5 % CO₂, 95 % air at 37°C. Cells (5×10⁸/L) were plated on 18 mm glass coverslips and allowed to adhere for 24 hours. Experiments to assess Cu²⁺ uptake were performed in the same media supplemented with 40 μM CuCl₂ for 0.5h.

Fluorescence Imaging

Fluorescent pictures were taken on Zeiss Leica inverted epifluorescence/reflectance laser scanning confocal microscope. Excitation of 1-loaded cells at 515 nm was carried out with a HeNe laser. Emission was collected using a 560 nm long-pass filter. Emission was collected from 570 to 625 nm. Before the experiments, cells were washed with PBS buffer and then incubated with 20 μM L1 in DMF-PBS (1:49, v/v) for 5h at 37 °C. Cell imaging was then carried out after washing cells with PBS.
Binding Constant
The binding constant was calculated from the emission intensity - titration curves according to the equation
\[
\frac{I_F^0}{(I_F-I_F^0)} = \left(\frac{1}{f}\right) \left[\frac{1}{K_S[M]}+1\right],
\]
where \(I_F^0\) is the emission intensity of \(L1\) at 552 nm, \(I_F\) is the emission intensity of \(L1\) at 552 nm upon the addition of different amount of \(Cu^{2+}\), \(f\) is the fraction of the initial fluorescence which is accessible to the sensor, \([M]\) is the concentration of \(Cu^{2+}\). The association constant values \(K_S\) is given by the ratio intercept / slope.

The binding constant was also calculated from the absorption intensity - titration curves according to the equation
\[
A = A_0 + \left(\frac{A_{lim} - A_0}{2C_0}\right)(C_0 + [M] + 1/K - ((C_0 + [M] + 1/K)^2 - 4C_0[M])^{0.5}),
\]
where \(A\) and \(A_0\) are the absorbance for \(L1\) (at 529 nm) in the presence and absence of \(Cu^{2+}\), \(C_0\) is half of the concentration of \(L1\); \([M]\) is the concentration of the \(Cu^{2+}\); and \(A_{lim}\) is the limiting value of the absorbance in the presence of excess \(Cu^{2+}\).

2. Synthesis routes and characteristic data

Rhodamine 6G hydrazone \(2\) is prepared according to the literature method.\(^1\)

Rhodamine 6G hydrozide (1.0 mmol, 0.428 g) and furan-2-carbaldehyde (1.0 mmol, 0.096 g) were mixed in boiling ethanol with 3 drops of acetic acid. After 4 h of stirring, brown precipitates obtained were filtered off, washed with ethanol/ether (1:1)
and dried over P₂O₅ under vacuum. Yield: 55 %. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 8.06-8.027 (m, 2H), 7.434-7.455 (m, 2H), 7.362-7.365 (d, 1H J = 1.2 Hz), 7.261 (s, 2H), 6.366-6.393 (ss, 4H), 3.491 (b, 3H), 3.181-3.235 (q, 4H, J=7.2), 1.873 (s, 6H), 1.299-1.334 (t, 6H, J = 6.8 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 165.14, 150.98, 150.47, 147.60, 143.77, 135.31, 133.49, 128.16, 127.49, 123.50, 123.45, 118.51, 112.04, 111.52, 105.84, 96.90, 65.47, 38.35, 16.66, 14.73. ESI-MS m/z = 507.2 [M + H]⁺, calc. for C₂₇H₂₉N₅O₂S = 506.23.

3. Supplementary spectra data

![Absorption spectra](image)

Fig. S1 Changes in the absorption spectra of L1 (20 μM) in the presence of different metal ions (40 μM) in water/CH₃CN (1:1 v/v).
Fig.S2 (a) Photos of color changes of L1 (20 μM) upon addition of 40 μM different metal ions in water/ CH₃CN (1:1 v/v) solutions.
Figure S3: Fitting of Fluorescence titration curve of L1 in water/CH₃CN (1:1 v/v) solution.

Equation: $Y = 0.98907 \times 10^{-6} \times X + 0.00881$

$R = 0.99651$
Fig. S4 Fluorescence spectra of L1 (20μM) upon the addition of various metal ions (20μm for Cu$^{2+}$; 40μm for all other cations) in water/CH$_3$CN (1:1 v/v) solution.
Fig. S5. Fluorescence spectra of 20 μM L1 and 30 μM Cu²⁺ upon the addition of 80 μM EDTA in water/CH₃CN (1:1 v/v) solution (λₑₓ = 495 nm).

Reversible binding nature of Cu²⁺ with L1:
Fig. S6 Fluorescence spectra of 1 (20 μM) with the addition of Cu$^{2+}$ (30 μM) in water/CH$_3$CN (1:1 v/v) at various pH values (Ex. 495 nm; Em. 552 nm).
Fig. S7 Time course of the response of L1 (20 μM) to 5 equiv Cu$^{2+}$ in water/CH$_3$CN (1:1 v/v) solution.
Figure S8 1H NMR (CDCl$_3$, 400 MHz) spectrum of L1.
Fig. S9 13C NMR (CDCl$_3$, 100MHz) spectrum of L1.
Fig. S10 ESI mass spectrum of L1.
Fig.S11 ESI mass spectrum of 20 μM L1 in the presence of 1.2 equiv of Cu$^{2+}$ in water/CH$_3$CN (1:1 v/v) solution, indicating the formation of [L1+Cu$^{2+}$-H].