Supporting Information

Octathienyl/phenyl-substituted zinc phthalocyanines J-aggregated through conformational planarization

Zihui chen, Lihong Niu, Yuanhua Cheng, Xinyu Zhou, Cheng Zhong, Fushi Zhang

Fig. S1 (a) The TLC experiment of 4,5-dibromophthalic acid dimethyl ester (left) and the product obtained from the Suzuki cross-coupling reaction (right), with a 2:1(volume ratio) mixed solvents of petroleum and ether ethyl acetate as the eluent. (b) 1HNMR spectra of the product in CDCl$_3$.

Fig. S2 The TLC experiments in the synthesis of phthalonitrile 7 from the mixture obtained from the Suzuki cross-coupling reaction. In each TLC experiment, the left is reagent and the right is the product. (1) 2→3; (2) 3→4; (3) 4→5; (4) 5→6; (5) 6→7; The eluent is a 2:1(volume ratio) mixed solvents of petroleum and ether ethyl acetate.
Fig. S3 The UV-Vis spectrum of Cu-TPc and Ni-TPc in THF ($c = 1 \times 10^{-4}$ mol L$^{-1}$). The sample is placed in a standard 1-mm quartz cuvette.

Fig. S4 1H NMR spectra of (A) Ni-TPc (1.5×10^{-3} mol L$^{-1}$) in CDCl$_3$; (B) Zn-TPc (1.5×10^{-3} mol L$^{-1}$) in the 5:1 mixed solvents of CDCl$_3$ and d_5-pyridine; (C) 5:1 mixed solvents of CDCl$_3$ and d_5-pyridine.
Fig. S5 The UV-Vis spectrum of Zn-TPc in THF (c = 2 × 10⁻⁵ mol. L⁻¹)

Fig. S6 The UV-Vis spectral changes of Zn-TPc (c = 2 × 10⁻⁵ mol. L⁻¹) in chloroform upon the addition of a drop of pyridine.

Fig. S7 The plot of lg(c⁻A₇₀₀/ε₇₀₀) versus lg(A₇₀₀/ε₇₀₀) of Zn-TPc in the concentration range of 1.25 × 10⁻⁶ to 2 × 10⁻⁵ mol. L⁻¹.
Fig. S8 Computer optimized conformation of Zn-Pc by energy minimization method. Left: side view; right: top view