Supporting Information for:

Access to multinuclear salen complexes using olefin metathesis

Robert M. Haak, Ana M. Castilla, Marta Martínez Belmonte, Eduardo C. Escudero-Adán, Jordi Benet-Buchholz and Arjan W. Kleij*

Contents:

Spectra Table 1..2
Spectra Table 2..6
Spectra Table 3..19
Spectra for 29, 30, and 33 – 35...25
Table 1, entry 1
Scale: 0.1 mmol, cat. C (5 mol%), THF, 100 mM, 72 h, 61% conv.

1H NMR of starting material 4 (below) and product di-4 (above):

MS (MALDI+) of the product mixture:
Table 1, entry 2

Scale: 0.1 mmol, cat. C (5 mol%), DCM, 100 mM, 24 h, 29% conv.

^1^H NMR of starting material 5 (below) and product di-5 (above):

MS (MALDI+) of the product mixture containing 5 and di-5.
Table 1, entry 3

Scale: 0.1 mmol, cat. C (7 mol%), THF, 50 mM, 48 h, 10% conv.

1H NMR of starting material (R,R)-9 (below) and product (above):

In this case, the reaction was performed without isolating the product, hence no mass spectrometric analysis was obtained.
Table 1, entry 4
Scale: 0.1 mmol, cat. C (14 mol%), DCM, 100 mM, 24 h, 59% conv.

1H NMR of starting material (R,R)-10 (below) and product di-(R,R)-10 (above):

MS (MALDI+) of the product mixture:
Table 2, entry 1
Scale 0.5 mmol, cat. A (14 mol%), DCM, 167 mM, 48 h, >95% conv.
1H NMR of starting material 15 (below) and product (above):

MS (MALDI+) of the product mixture:

Comment 1: dcb-C=O
Comment 2: MALDI+

Higher mass fraction

Linear dimer

Cyclic dimer

Linear trimer

Cyclic trimer

Intensity [a.u.] × 10^3
Table 2, entry 2
Scale 0.1 mmol, cat. B (5 mol%), DCM, 5 mM, 72 h, >95% conv.

1H NMR of starting material 15 (below) and product (above):

MS of crude product di-15:
Table 2, entry 2 (contd.)

1H NMR and MS (ES$^+$) of di-15 isolated after column chromatography (33% yield):
Table 2, entry 3
Scale 0.1 mmol, cat. B (5 mol%), DCM, 100 mM, 72 h, 50% conv.
1H NMR of 17 (below) and product di-17 (above):
Table 2, entry 4
Scale 0.1 mmol, cat. C (5 mol%), DCM, 100 mM, 24 h, 57% conv.

1H NMR of 17 (below) and product di-17 (above):

MS (MALDI+) of di-17:
Table 2, entry 5
Scale 0.1 mmol, cat. C (5 mol%), THF, 62 mM, 24 h, 93% conv.

1H NMR of 17 (below) and product di-17 (above):

MS (MALDI+) of di-17:

N.B. When using THF as solvent, the product mixture partly consisted of completely insoluble material not amenable to detailed analysis. The MALDI shown above is that of the soluble part of the product mixture.
Table 2, entry 6
Scale 0.5 mmol, cat. A (21 mol%), DCM, 100 mM, 48 h, >95% conv.

1H NMR of starting material (±)-19 (below) and product oligo-(±)-19 (above):

MS (MALDI+) of oligo-(±)-19 (bottom):
Table 2, entry 6 (contd.)

Attempted separation of the oligomers in oligo-(±)-19

In order to access individual compounds from the mixtures of oligomers, it was attempted to separate oligo-(±)-19 using GPS. However, no separation was obtained. Chromatography was hampered by the low solubility of oligo-(±)-19. Using reversed phase HPLC, some separation could be achieved (see chromatogram below). However, none of the fractions corresponded to any of the the expected products; furthermore, some of the fractions did not contain nickel as judged from their mass spectra. Possibly, demetallation of the nickel complexes with consecutive product decomposition takes place during chromatography.
Table 2, entry 7
Scale 0.5 mmol, cat. A (14 mol%), DCM, 5 mM, 96 h, >95% conv.

1H NMR of starting material (±)-19 (below) and product oligo-(±)-19 (above):

MS (MALDI+) of the product mixture containing dimers and tetramers:
Table 2, entry 8
Scale 0.5 mmol, cat. B (3 mol%), DCM / THF 1:4, 20 mM, 3 h, >95% conv.
1H NMR of starting material (±)-19 (below) and product (above):

MS (MALDI+) of the product mixture:
Comment 1 dctb-DMSO-CH2Cl2
Comment 2 MALDI+
Table 2, entry 9
Scale 0.1 mmol, cat. C (5 mol%), DCM, 100 mM, 96 h, 21% conv.

1H NMR of (±)-19 (below) and product oligo-(±)-19 (above):
Table 2, entry 10
Scale: 0.05 mmol, cat. B (5 mol%), DCM, 25 mM, 24 h, >95% conv.

1H NMR of starting material (R,R)-19 (below) and product oligo-(R,R)-19 (above):

MS (MALDI+) of the product mixture containing dimer, trimer, and tetramers:

Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011
Table 2, entry 10 (contd.)

CD spectra of \((R,R)\)-19 (pink) and oligo-\((R,R)\)-19 (blue) in DCM \((1.0 \cdot 10^{-4} \text{ M})\):
Table 3

1H NMR and MS of starting material di-4.
Table 3, entry 1

Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011
Table 3, entry 3

\[
\text{Supplementary Material (ESI) for Dalton Transactions}
\]

This journal is © The Royal Society of Chemistry 2011
Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

Table 3, entry 5
1H NMR of 29:

13C NMR (DEPTQ) of 29:
1H NMR of 30:

13C NMR (DEPTQ) of 30:
^{1}H NMR of 33:

^{13}C NMR (DEPTQ) of 33:
1H NMR of 34:

13C NMR (DEPTQ) of 34:
\(^1\)H NMR of 35 (DMF-\(d_7\), 378 K):

\[^{13}\)C NMR of 35 (DMSO-\(d_6\) / pyridine-\(d_5\) 9:1, 378 K):
MS (MALDI) 35:

Copy of DOSY 35:
Transmetallation of 35: Zn-compound 35 (15.0 mg, 6.83×10⁻³ mmol) was dissolved in CHCl₃ (2 mL), after which a solution of Ni(OAc)₂·4H₂O (9.1 mg, 38.1×10⁻³ mmol) in MeOH (2 mL) was added. An immediate color change was observed, after which the mixture was allowed to stir at rt for 1 h. The mixture was then filtered and the residue was washed with water and dried. Characterization of the resulting material was found to be impossible due to its insolubility in a wide range of NMR solvents.
Additional comments for the X-ray diffraction studies carried out for complexes 19 and 20.

Complex 19: Compound 19 crystallizes in a triclinic crystal which can be solved and refined in the chiral space group $P1$ and in centrosymmetric space group $P-1$. Since the compound analyzed is chiral the space group $P1$ was selected. In the asymmetric unit two independent molecules can be observed which are related by pseudo centro symmetry. The Flack parameter refined to 0.016(6). Alternatively the structure can be solved and refined in the centrosymmetric space group $P-1$ with only one independent molecule and the chiral rest disordered in two orientations.

Complex 20: Compound 20 crystallizes in a monoclinic space which can be solved and refined in the chiral space group $P2_1$ and in the centrosymmetric space group $P2_1/c$. Since the compound analyzed is chiral the space group $P2_1$ was selected. In the asymmetric unit two independent molecules can be observed which are related by pseudo centro symmetry. The Flack parameter refined to 0.000(5). Alternatively the structure can be solved and refined in the centro-symmetric space group $P2_1/c$ with only one independent molecule and the chiral rest disordered in two orientations.