Supporting Information

A Pentaquinone Based 4-2 Bit Photonic Encoder

Vandana Bhalla*, Roopa, Ankush Gupta, Abhimanew Dhir, Manoj Kumar*
Department of Chemistry, UGC Centre for Advanced Studies,
Guru Nanak Dev University, Amritsar, Punjab -143005- INDIA

S3 UV-visible spectra of 5 in the presence of Hg$^{2+}$ ions.
S4 UV-visible spectra of 5 in the presence of Fe$^{3+}$ ions.
S5 UV-visible spectra of 5 in the presence of F$^{-}$ and CN$^{-}$ ions.
S6 UV-visible spectra of 5 in the presence of OH$^{-}$ ions.
S7 Fluorescence spectra of 5 in response to the presence of Hg$^{2+}$ ions (340-1000equiv.)
S8 Fluorescence spectra of 5 in response to the presence of F$^{-}$ ions (0-3000 equiv.)
S9 Job’s plot of 5 with Hg$^{2+}$ and Fe$^{3+}$ ions.
S10 Job’s plot of 5 with CN$^{-}$ and F$^{-}$ ions.
S11 Fluorescence spectra of 5 in response to the presence of Fe$^{3+}$ ions.
S12 Fluorescence spectra of 5 in response to the presence of various metal ions except Hg$^{2+}$ and Fe$^{3+}$ ions.
S13 Fluorescence spectra of 5 in response to the presence of various anions except CN$^{-}$ and F$^{-}$ ions.
S14 1H NMR Spectrum of 3.
S15 Mass Spectrum of 3.
S16 ¹H NMR Spectrum of 5.
S17 ¹³C NMR Spectrum of 5.
S18 Mass Spectrum of 5.
S19 IR Spectrum of 5.
S20 IR Spectrum of 5.Hg²⁺ complex.
S21 Reversibility of 5.Fe³⁺ complex.
Figure S1. UV-visible spectra of 5 (1X 10^{-5} M) in the presence of Hg^{2+} ions (0-100 equiv.) in THF.
Figure S2. UV-visible spectra of 5 (1X 10⁻⁵ M) in the presence of Fe³⁺ ions (0-100 equiv.) in THF.
Figure S3. UV-visible spectra of $5 \ (1 \times 10^{-5} \text{ M})$ in the presence of F^{-} ions (0-500 equiv.) in THF.

Figure S4. UV-visible spectra of $5 \ (1 \times 10^{-5} \text{ M})$ in the presence of CN^{-} ions (0-500 equiv.) in THF.
Figure S5. UV-visible spectra of 5 (1X 10^{-5} M) in the presence of OH^- ions (0-300 equiv.) in THF.
Figure S6. Fluorescence spectra of 5 (1 X 10^{-5} M) in response to the presence of Hg^{2+} ions (340-1000 equiv.) in THF; \(\lambda_{ex} = 340 \) nm.
Figure S7. Fluorescence spectra of 5 (1 X 10^{-5} M) in response to the presence of F^- ions (0-3000 equiv.) in THF; $\lambda_{ex} = 340$ nm.
Figure S8. Job’s plot of 5 with Hg^{2+} and Fe^{3+} representing stoichiometry 1:1 (host: guest).
Figure S8. Job’s plot of 5 with CN⁻ and F⁻ representing stoichiometry 1:1 (host: guest).
Figure S9. Fluorescence spectra of 5 (1 X 10^{-5} M) in response to the presence of Fe^{3+} ions (1000 equiv.) in THF; \(\lambda_{ex} = 340 \) nm.
Figure S10. Fluorescence spectra of 5 (1 X 10^{-5} M) in response to the presence of various metal ions (1000 equiv.) except Hg^{2+} and Fe^{3+} ions in THF; \(\lambda_{ex} = 340 \) nm.
Figure S11. Fluorescence spectra of 5 (1 X 10^{-5} M) in response to the presence of various anions (3000 equiv.) except CN⁻ and F⁻ ions in THF; λ_{ex} = 340 nm.
\textbf{1H NMR Spectrum of 3}

![H NMR Spectrum of 3](image)
Mass Spectrum of 3
1H NMR Spectrum of 5
13C NMR Spectrum of 5
Mass Spectrum of 5
IR Spectrum of 5
IR Spectrum of 5 + Hg$^{2+}$
Figure S12. Fluorescence emission spectra of (a) 5 (1 X 10^{-5}); (b) 5 + Fe^{3+} (1000 equiv.); (c) 5 + Fe^{3+} (1000 equiv.) + F^- (3000 equiv.) in THF.