Supporting Information for

Structures and magnetism of {Ni₂Na₂}, {Ni₄} and {Ni₆^{II}Ni^{III}} 2-Hydroxy-3-alkoxy-benzaldehyde clusters

Shu-Hua Zhang,^a* Ning Li^a, Cheng-Min Ge^a, Chao Feng^a, Lu-Fang Ma^{b,*}

^a College of Chemistry and Bioengineering, Guilin University of Technology (Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education of China), Guilin 541004, PR China

^b College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China

NI1–O4	2.000(2)	O5–NI1–N1 ⁱ	172.25(11)
NI1–O1	2.011(2)	O4-NI1-N1	96.38(10)
NI1–O5	2.031(3)	01-NI1-N1	89.56(11)
NI1–O3	2.062(3)	O5-NI1-N1	93.64(12)
NI1–N1 ⁱ	2.092(3)	O3-NI1-N1	174.02(12)
NI1-N1	2.112(3)	N1 ⁱ -NI1-N1	79.37(14)
NI1–NI1 ⁱ	3.235(2)	O4 ⁱ -Na1-O1	97.84(11)
NI1–Na1 ⁱ	3.485(2)	O4 ⁱ –Na1–O7	121.46(12)
Na1–O4 ⁱ	2.268(3)	O1-Na1-O7	133.91(12)
Na1–O1	2.292(3)	O4 ⁱ -Na1-O2	134.33(11)
Na1–O7	2.325 (4)	O1-Na1-O2	66.46(10)
Na1–O2	2.454(3)	O7-Na1-O2	96.14(12)
Na1–O6 ⁱ	2.527(3)	O4 ⁱ -Na1-O6 ⁱ	65.94(10)
Na1–N1 ⁱ	2.670(3)	O1–Na1–O6 ⁱ	135.49(11)
NI1 ⁱ -N1-NI1	100.63(14)	O7–Na1–O6 ⁱ	85.88(12)
04-NI1-O1	173.78(9)	O2–Na1–O6 ⁱ	94.78(10)
O4-NI1-O5	89.86(11)	O4 ⁱ -Na1-N1	32.79(6)
01-NI1-O5	87.93(11)	O1-Na1-N1	82.18(7)
O4-NI1-O3	87.23(11)	O2-Na1-N1	117.40(10)
O1-NI1-O3	87.01(10)	O7–Na1–N1	144.99(19)
O5-NI1-O3	91.13(11)	O6-Na1-N1	97.21(8)
O4– NI1–N1 ⁱ	87.60(11)	N3-N2-N1	179.7(5)
$O1-M1-N1^i$	95.32(11)		
Symmetry codes: (i) (i) $-x + 1, -y + 1, -z + 2$.			

Table S1. Selected bond lengths $[\text{\AA}]$ and angles $[^\circ]$ for 1

Table S2. Selected bond lengths [Å] and angles [°] for 2.

Ni1-O2	2.022(6)	O1 ⁱⁱ –Ni1–O4	93.0(2)
Ni1-O1	2.013(5)	O2 ⁱⁱ -Ni1-O4	98.0(2)
Ni1-O4 ⁱ	2.052(5)	O4 ⁱⁱ -Ni1-O4	80.5(3)
Ni1-O4 ⁱⁱ	2.061(5)	O4 ⁱ -Ni1-O4 ⁱⁱ	82.8(2)
Ni1–O4	2.045(5)	01-Ni1-05	94.8(2)

Ni1-O52.107(12)O2-Ni1-O588.9(2)Ni1-O5'2.18(4)O4-Ni1-O5 ⁱ 91.2(2)Ni···Ni3.052-3.127 $O4^{i}$ -Ni1-O589.9(2)O1-Ni1-O290.6(2) $O4^{ii}$ -Ni1-O5169.5(2)O1-Ni1-O4172.6(2) $O4^{i}$ -Ni1-O483.3(2)O2-Ni1-O493.8(2)Ni1-O4-Ni1 ⁱⁱⁱ 96.5(2)O1 ⁱ -Ni1-O492.4(2)Ni1 ⁱⁱ -O4-Ni1 ⁱⁱⁱ 96.5(2)O2 ⁱ -Ni1-O4176.9(2)Ni1 ⁱⁱⁱ -O4-Ni1 ⁱⁱⁱ 95.9(2)Symmetry codes:(i) - x + 1/2, - y + 3/2, z; (ii) - y + 1, x+ 1/2, - z + 1; (iii) y - 1/2, - x + 1, - z + 1.		-		
Ni1-O5'2.18(4)O4-Ni1-O5 ⁱ 91.2(2)Ni···Ni $3.052-3.127$ O4 ⁱ -Ni1-O589.9(2)O1-Ni1-O290.6(2)O4 ⁱⁱ -Ni1-O5169.5(2)O1-Ni1-O4172.6(2)O4 ⁱ -Ni1-O483.3(2)O2-Ni1-O493.8(2)Ni1-O4-Ni1 ⁱⁱⁱ 96.5(2)O1 ⁱ -Ni1-O492.4(2)Ni1 ⁱⁱ -O4-Ni1 ⁱⁱⁱ 96.5(2)O2 ⁱ -Ni1-O4176.9(2)Ni1 ⁱⁱⁱ -O4-Ni1 ⁱⁱⁱ 95.9(2)Symmetry codes:(i) - x + 1/2, - y + 3/2, z; (ii) - y + 1, x+ 1/2, - z + 1; (iii) y - 1/2, - x + 1, - z + 1.	Ni1–O5	2.107(12)	O2-Ni1-O5	88.9(2)
Ni···Ni $3.052-3.127$ $O4^{i}-Ni1-O5$ $89.9(2)$ O1-Ni1-O2 $90.6(2)$ $O4^{ii}-Ni1-O5$ $169.5(2)$ O1-Ni1-O4 $172.6(2)$ $O4^{i}-Ni1-O4$ $83.3(2)$ O2-Ni1-O4 $93.8(2)$ $Ni1-O4-Ni1^{iii}$ $96.5(2)$ O1^{i}-Ni1-O4 $92.4(2)$ $Ni1^{ii}-O4-Ni1^{iii}$ $96.5(2)$ O2^{i}-Ni1-O4 $176.9(2)$ $Ni1^{iii}-O4-Ni1^{ii}$ $95.9(2)$ Symmetry codes: $(i) - x + 1/2, - y + 3/2, z;$ $(ii) - y + 1, x + 1/2, - z + 1;$	Ni1–O5'	2.18(4)	O4–Ni1–O5 ⁱ	91.2(2)
O1-Ni1-O290.6(2) $O4^{ii}$ -Ni1-O5169.5(2)O1-Ni1-O4172.6(2) $O4^{i}$ -Ni1-O483.3(2)O2-Ni1-O493.8(2)Ni1-O4-Ni1 ⁱⁱⁱ 96.5(2)O1 ⁱ -Ni1-O492.4(2)Ni1 ⁱⁱ -O4-Ni196.5(2)O2 ⁱ -Ni1-O4176.9(2)Ni1 ⁱⁱⁱ -O4-Ni1 ⁱⁱⁱ 95.9(2)Symmetry codes:(i) - x + 1/2, - y + 3/2, z;(ii) - y + 1, x+ 1/2, - z + 1;(iii) y - 1/2, - x + 1, - z + 1.	Ni…Ni	3.052-3.127	O4 ⁱ -Ni1-O5	89.9(2)
O1-Ni1-O4172.6(2)O4 ⁱ -Ni1-O483.3(2)O2-Ni1-O493.8(2)Ni1-O4-Ni1 ⁱⁱⁱ 96.5(2)O1 ⁱ -Ni1-O492.4(2)Ni1 ⁱⁱ -O4-Ni196.5(2)O2 ⁱ -Ni1-O4176.9(2)Ni1 ⁱⁱⁱ -O4-Ni1 ⁱⁱ 95.9(2)Symmetry codes:(i) $-x + 1/2, -y + 3/2, z;$ (ii) $-y + 1, x + 1/2, -z + 1;$ (iii) $y - 1/2, -x + 1, -z + 1.$	O1-Ni1-O2	90.6(2)	O4 ⁱⁱ –Ni1–O5	169.5(2)
O2-Ni1-O493.8(2)Ni1-O4-Ni1 ⁱⁱⁱ 96.5(2)O1 ⁱ -Ni1-O492.4(2)Ni1 ⁱⁱ -O4-Ni196.5(2)O2 ⁱ -Ni1-O4176.9(2)Ni1 ⁱⁱⁱ -O4-Ni1 ⁱⁱ 95.9(2)Symmetry codes:(i) $-x + 1/2, -y + 3/2, z;$ (ii) $-y + 1, x + 1/2, -z + 1;$ (iii) $y - 1/2, -x + 1, -z + 1.$	O1-Ni1-O4	172.6(2)	O4 ⁱ -Ni1-O4	83.3(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2-Ni1-O4	93.8(2)	Ni1–O4–Ni1 ⁱⁱⁱ	96.5(2)
$O2^{i}$ -Ni1-O4176.9(2) NiI^{iii} -O4-Ni I^{ii} 95.9(2)Symmetry codes: (i) - x + 1/2, - y + 3/2, z; (ii) - y + 1, x+ 1/2, - z + 1; (iii) y - 1/2, - x + 1, - z + 1.	O1 ⁱ -Ni1-O4	92.4(2)	Ni1 ⁱⁱ –O4–Ni1	96.5(2)
Symmetry codes: (i) $-x + 1/2$, $-y + 3/2$, z; (ii) $-y + 1$, x + $1/2$, $-z + 1$; (iii) $y - 1/2$, $-x + 1$, $-z + 1$.	O2 ⁱ -Ni1-O4	176.9(2)	Ni1 ⁱⁱⁱ –O4–Ni1 ⁱⁱ	95.9(2)

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

 Table S3. Selected bond lengths [Å] and angles [°] for 3.

			1
Ni1-O10	1.997(4)	O4 ^a -Ni2-O2	101.8(2)
Ni1-O10 ^a	1.997(4)	O6 ^a -Ni2-O2	95.2(3)
Ni1-O12 ^a	2.005(4)	O10-Ni2-O2	153.3(2)
Ni1-012	2.005(4)	O12 ^a -Ni2-O2	95.9(2)
Ni1-O11 ^a	2.018(4)	01-Ni2-02	75.6(2)
Ni1-011	2.018(4)	01-Ni3-07	176.7(2)
Ni2-O1	1.965(5)	O1-Ni3-O3	87.9(3)
Ni2-O4 ^a	1.970(5)	O7-Ni3-O3	94.2(3)
Ni2-O6 ^a	2.039(6)	01-Ni3-011	101.6(2)
Ni2-O10	2.078(5)	07-Ni3-011	80.5(2)
Ni2-O12 ^a	2.093(5)	O3-Ni3-O11	99.9(2)
Ni2-O2	2.183(6)	O1-Ni3-O10	78.7(2)
Ni3-O1	1.938(5)	O7-Ni3-O10	99.3(2)
Ni3-O7	1.957(5)	O3-Ni3-O10	166.1(3)
Ni3-O3	2.073(7)	O11-Ni3-O10	79.3(2)
Ni3-011	2.084(4)	01-Ni3-08	100.9(2)
Ni3-O10	2.105(5)	07-Ni3-08	76.4(2)
Ni3-08	2.181(5)	O3-Ni3-O8	92.6(3)
Ni4-O7	1.959(5)	O11-Ni3-O8	154.5(2)
Ni4-O4	1.979(5)	O10-Ni3-O8	93.7(2)
Ni4-09	2.037(6)	07-Ni4-04	174.7(2)
Ni4-012	2.080(4)	07-Ni4-09	88.3(2)
Ni4-011	2.119(5)	O4-Ni4-O9	94.4(2)
Ni4-O5	2.151(5)	07-Ni4-012	103.8(2)
Ni1…Ni2	3.093(1)	O4-Ni4-O12	80.4(2)
Ni1…Ni3	3.111(1)	O9-Ni4-O12	97.0(2)

Supplementary Material (ESI) for Dalton Transactions	
This journal is (c) The Royal Society of Chemistry 201	1

Ni1…Ni4	3.106(1)	07-Ni4-011	79.5(2)
Ni2…Ni3	3.114(1)	O4-Ni4-O11	98.3(2)
Ni2…Ni4 ^a	3.098(1)	O9-Ni4-O11	166.2(2)
Ni3…Ni4	3.103(2)	O12-Ni4-O11	79.8(2)
O10-Ni1-O12 ^a	83.6(2)	O7-Ni4-O5	99.2(2)
O10-Ni1-O12	96.4(2)	O4-Ni4-O5	76.1(2)
O10-Ni1-O11 ^a	96.0(2)	09-Ni4-O5	96.2(2)
O10 ⁱ -Ni1-O11 ^a	84.0(2)	O12-Ni4-O5	153.8(2)
O12 ^a -Ni1-O11 ^a	83.7(2)	011-Ni4-05	92.2(2)
O12-Ni1-O11 ^a	96.3(2)	Ni3-O1-Ni2	105.8(2)
O1-Ni2-O4 ^a	176.7(2)	Ni4-O7-Ni3	104.4(2)
O1-Ni2-O6 ^a	95.0(2)	Ni1-O10-Ni2	98.8(2)
O4 ^{a-} Ni2-O6 ^a	87.2(2)	Ni1-O10-Ni3	98.5(2)
O1-Ni2-O10	79.0(2)	Ni2-O10-Ni3	96.3(2)
O4 ^a -Ni2-O10	103.3(2)	Ni1-O11-Ni3	98.7(2)
O6 ^a -Ni2-O10	95.0(2)	Ni1-011-Ni4	97.2(2)
O1-Ni2-O12 ^a	98.1(2)	Ni3-O11-Ni4	95.1(2)
O4 ^a -Ni2-O12 ^a	80.0(2)	Ni1-O12-Ni4	98.9(2)
O6 ^a -Ni2-O12 ^a	164.6(2)	Ni1-O12-Ni2 ^a	97.8(2)
O10-Ni2-O12 ^a	79.7(2)	Ni4-O12-Ni2 ^a	95.9(2)

Symmetry codes: (a) -x + 1/2, -y + 3/2, -z.

Table S4 Coordination number (*N*), bond valence sum (*BVS*), expected atomic valence (*V*) and deviation from the expected atomic valence (ΔV) for the nickel cations.

	Ni1	Ni2	Ni3	Ni4
Ν	6	6	6	6
BVS	2.98	2.07	2.06	2.07
V	+3	+2	+2	+2
ΔV	0.02	0.07	0.06	0.07

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Fig. S1. IR contrast of 1-3.

Fig. S2 Packing drawing of the 3.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Fig. S3 Plot of χ_M^{-1} vs T for **1** – **3**. The solid line represents a fit of data in the temperature range 50-300 K.

Fig. S4 Field dependence of magnetization at 2 K for 1 - 2.

Fig. S5 In-phase and out-of-phase ac the range of 2-11.7 K for 1.

Supplementary Material (ESI) for Dalton Transactions This journal is (c) The Royal Society of Chemistry 2011

Fig. S6 In-phase and out-of-phase ac the range of 2-12 K for 2.