Supporting Information

Sensitized luminescence in dinuclear lanthanide(III) complexes of bridging 8-hydroxyquinoline derivatives with different electronic properties

Hai-Bing Xu, Jia Li, Lin-Xi Shi, and Zhong-Ning Chen

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou,
Fujian 350002, China
Figure S1. Fluoride-induced lanthanide(III) emission enhancement of 2 in dichloromethane solutions before (black) and after (red) addition of 2 equiv [Bu₄N]F at ambient temperature.

Figure S2. Emission spectra of 2 in dichloromethane before (cyan) and after addition of 1 (green), 1.5 (blue), 2 (red) and 100 (black) equivalent of [Bu₄N]F at ambient temperature.
Figure S3. UV-vis absorption spectra of 2 in dichloromethane before (blue) and after addition of 1 (red), 1.5 (black), 2 (cyan) and 100 (green) equivalent of [Bu₄N]F at ambient temperature.

Figure S4. Excitation (black) and emission (red) spectra of 4 in solid state at ambient temperature.
Figure S5. Comparison of the changes of lifetime decay curves of 2 (top) and 3 (bottom) in dichloromethane before (black) and after (red) addition of [Bu₄N]F (molar ratio of fluoride to 2 and 3 are 2 : 1, respectively).
Figure S6. Emission band due to the $\pi \rightarrow \pi^*$ excited state of HMq(L1), HPhMq (L2), and HMe$_2$C$_6$H$_4$Mq (L3) in dichloromethane at ambient temperature.

Figure S7. Excitation ($\lambda_{em} = 610$ nm) spectra of 1 (black), 2 (red), and 3 (blue) in dichloromethane solution at 298K.