1-(2-picolyl)-substituted 1,2,3-triazole as novel

chelating ligand for the preparation of ruthenium

complexes with potential anticancer activity

Ioannis Bratsos,^a* Damijana Urankar,^b Ennio Zangrando,^a Petia Genova-Kalou,^c Janez Košmrlj,^b Enzo Alessio,^a Iztok Turel^b*

^a Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.

^b Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana, Slovenia.

^c Department of Virology, Laboratory of Herpesvirus Infections and Cell Cultures, National Centre of Infectious and Parasitic Diseases, 44A Stoletov Street, 1233 Sofia, Bulgaria.

SUPPORTING INFORMATION

- Figure S1: Crystal packing of complex 1.
- Figure S2: ¹H NMR spectra of 1 and 2 in CDCl₃ at 25.0 °C.
- **Figure S3**: The 2D homonuclear ¹H-¹H COSY and heteronuclear ¹H-¹³C HSQC NMR spectra of **1** in CDCl₃ at 25.0 °C.
- Figure S4: ¹H NMR spectra of 3 and 4 in CD₃NO₂ at 25.0 °C.
- **Figure S5**: The 1 H- 1 H COSY NMR spectrum of **3** in CD₃NO₂ at 25.0 °C.
- Figure S6: The 2D heteronuclear ¹H-¹³C HSQC and HMBC NMR spectra of **3** in CD₃NO₂ at 25.0 °C.
- **Figure S7**: The 2D homonuclear ¹H-¹H COSY and heteronuclear ¹H-¹³C HSQC NMR spectrum of **4** in CD₃NO₂ at 25.0 °C.
- Figure S8: ¹H NMR spectral changes during the aquation of 4 in D_2O at 25.0 °C.
- **Figure S9**. ¹H NMR spectral changes upon addition of 100mM NaCl to equilibrated solution of **4** and **3a** in D₂O at 25.0 °C.
- **Figure S10**: ¹H NMR spectral changes during the aquation of **5** in D_2O at 25.0 °C.
- Figure S11: Time evolution of UV-Vis spectra of complexes 3, 4 and 5 in H_2O at 25.0°C.
- Figure S12: Time evolution of UV-Vis difference spectra during the aquation of complexes 4 and 5 in H_2O at 25.0°C.
- **Table 1 and 2**: Tables with assignments of ¹H and ¹³C resonances (δ) for complexes 1 5 in various solvents and for hydrolysis products **3a** and **5a**.

Figure S1. Crystal packing of complex **1** showing 1D arrays of complexes formed by stacking interactions between phenyl rings and between pyridyl rings of symmetry related complexes.

Figure S2. ¹H NMR spectra of 1 (top) and 2 (bottom) in CDCl₃ at 25.0 °C.

Figure S3. The 2D homonuclear ¹H-¹H COSY (top) and heteronuclear phase-sensitive ¹H-¹³C HSQC (bottom, red cross-peaks = CH₂; blue cross-peaks = CH or CH₃) NMR spectra of **1** in CDCl₃ at 25.0 °C.

Figure S4. ¹H NMR spectra of 3 (top) and 4 (bottom) in CD_3NO_2 at 25.0 °C.

Figure S5. The ¹H-¹H COSY NMR spectrum of **3** in CD₃NO₂ at 25.0 °C.

Figure S6. The 2D heteronuclear phase-sensitive ${}^{1}\text{H}{-}^{13}\text{C}$ HSQC (top, blue cross-peaks = CH₂; red cross-peaks = CH or CH₃) and HMBC (downfield region, bottom) NMR spectra of **3** in CD₃NO₂ at 25.0 °C.

Figure S7. The 2D homonuclear ¹H-¹H COSY (downfield region, top) and heteronuclear phasesensitive ¹H-¹³C HSQC (bottom, blue cross-peaks = CH₂; red cross-peaks = CH or CH₃) NMR spectrum of **4** in CD₃NO₂ at 25.0 °C.

Figure S8. ¹H NMR spectral changes during the hydrolysis of **4** (2.0 mM) in D₂O at 25.0 °C. With (*) are indicated the resonances of the **ppt** ligand of the aqua species **3a**.

Figure S9. ¹H NMR spectral changes upon addition of 100mM NaCl to equilibrated solution (after 1d) of **4** and **3a** in D₂O at 25.0 °C. With (*) and (•) are indicated the resonances of the **ppt** ligand of the aqua species **3a** and of the **4**, respectively.

Figure S10. ¹H NMR spectral changes during the hydrolysis of **5** (2.0 mM) in D₂O at 25.0 °C. With (*) are indicated selected resonances of the aqua species **5a**.

Figure S11. Time evolution of UV-Vis spectra of complexes 3 (top), 4 (middle) and 5 (bottom) in H_2O at 25.0 °C.

Figure S12. Time evolution of UV-Vis difference spectra during the aquation of complexes 4 (top) and 5 (bottom) in H₂O at 25.0 °C. $\Delta A = A_t - A_0$, where A_t = absorbance at time *t* and A_0 = absorbance at t = 2 min (i.e. the time at which the first spectrum was recorded).

	Free ppt			1		2		3		3 a	4		5		5a
	D ₂ O	CDCl ₃	DMF*	CDCl ₃	CD ₃ NO ₂	CDCl ₃	CD ₃ NO ₂	D ₂ O	CD ₃ NO ₂	D ₂ O	D ₂ O	CD ₃ NO ₂	D ₂ O	DMF*	D ₂ O
3	7.41- 7.49	7.20- 7.35	7.31- 7.43	7.48- 7.31	7.65	7.52- 7.36	7.67	7.95	7.99	7.82	7.74	7.74	7.94- 7.72	8.00	n.a.
4	7.92	7.69	7.87	7.92- 7.64	7.97	7.83	8.02	8.23	8.26	8.08	8.01	8.02	8.11	8.25	8.17
5	7.41- 7.49	7.20- 7.35	7.31- 7.43	7.48- 7.31	7.53- 7.40	7.52- 7.36	7.56- 7.48	7.74	7.79	7.62	7.49	7.60- 7.38	7.65	7.76	7.74
6	8.52	8.61	8.59	9.67	9.56	9.90	9.74	9.34	9.48	9.26	9.27	9.24	9.06	9.24	9.02
CH ^a	5.82	5.70	5.84	7.92- 7.64	7.59	7.52- 7.36	7.01	6.32	6.42	6.41	6.36	6.28	6.17- 6.08	6.48	n.a.
CH ^b				5.26	5.69	5.41	5.87	6.11	6.16	6.01	5.94	6.10	5.68	5.96	5.71
5'	8.37	7.94	8.70	8.11	8.56	8.16	8.58	8.83	8.76	8.71	8.62	8.52	8.72	9.15	8.77
2''/6''	7.83	7.82	7.92- 7.98	7.92- 7.64	7.87	7.78	7.92	7.89	7.88	7.86	7.84	7.85	7.94- 7.72	7.96- 7.90	n.a.
3''/5''	7.53	7.41	7.43- 7.50	7.48- 7.31	7.53- 7.40	7.52- 7.36	7.56- 7.48	7.54	7.59- 7.42	7.59- 7.53	7.53	7.60- 7.38	7.58- 7.45	7.58- 7.50	n.a.
4''	7.41- 7.49	7.20- 7.35	7.31- 7.43	7.48- 7.31	7.53- 7.40	7.52- 7.36	7.45	7.54	7.59- 7.42	7.53- 7.48	7.53	7.60- 7.38	7.58- 7.45	7.49- 7.42	n.a.
CH3 - dmso				3.86/ 3.64/ 3.52/ 3.19	3.78/ 3.52/ 3.37/ 3.17	3.59/ 3.56/ 3.35/ 3.28	3.41/ 3.41/ 3.40/ 3.19	3.54/ 1.99	3.57/ 1.88						

Table S1. Assignments of ¹H resonances (δ) for complexes 1 – 5 in various solvents and for hydrolysis products **3a** and **5a**.

*from the ref.: D. Urankar, B. Pinter, A. Pevec, F. De Proft, I. Turel and J. Košmrlj, Inorg. Chem., 2010, 49, 4820-4829.

n.a.: not assigned. These resonances are not well resolved since they are overlapped with resonances of 5.

	Free ppt	-	1	2	3	4	5
	DMF*	CDCl ₃	CD ₃ NO ₂	CDCl ₃	CD ₃ NO ₂	CD ₃ NO ₂	DMF*
2	156.1	153.9	156.3	151.8	154.6	155.1	154.2
3	122.9	124.0	125.9	124.1	130.5	127.7	127.1
4	138.0	138.4	140.1	138.6	142.6	140.2	141.2
5	123.9	124.2	124.5	124.3	128.8	126.8	126.7
6	150.3	161.4	161.8	159.9	158.2	158.4	159.1
CH ₂	55.7	56.3	56.7	56.1	56.0	56.0	55.2
4'	147.7	149.3	149.9	148.8	152.0	150.2	150.1
5'	122.7	124.7	126.9	125.1	129.1	126.6	127.5
1''	132.0	128.8	126.7	128.4	129.6	130.7	129.8
2''/6''	126.0	125.8	126.8	125.6	127.1	127.0	126.1
3''/5''	129.5	129.3	130.4	129.5	130.6	130.5	129.8
4''	128.5	129.5	130.3	129.8	131.1	130.4	129.8
CH ₃ - dmso		46.5/44.6/ 44.2/43.7	46.4/44.6/ 44.5/43.8	45.9/45.8 45.3/44.5	47.2/43.1		
CH ₂ [9]aneS ₃					38.4/38.3/ 38.1/31.1/ 30.0/29.5	37.9/35.1/ 34.9/34.8/ 31.7/31.4	

Table S2. Assignments of ¹³C resonances (δ) for complexes 1 – 5 in various solvents.

*from the ref.: D. Urankar, B. Pinter, A. Pevec, F. De Proft, I. Turel and J. Košmrlj, *Inorg. Chem.*, 2010, **49**, 4820-4829.