COMPARATIVE SPECTROSCOPIC AND MECHANISTIC STUDY OF CHELATION PROPERTIES OF FISETIN WITH IRON IN AQUEOUS BUFFERED SOLUTIONS. IMPLICATIONS ON *in vitro* ANTIOXIDANT ACTIVITY

Jasmina M. Dimitrić Marković ¹*, Zoran S. Marković ², Tanja P. Brdarić ³, Nenad D. Filipović ^{4, 5}

¹ Faculty of Physical Chemistry University of Belgrade Studentski trg 12-16, 11000 Belgrade, Republic of Serbia,
²Department of Bio-chemical and Medical Sciences, State University of Novi Pazar, Vuka Karadžića bb, Novi Pazar 36300, Republic of Serbia
³ Kirilo Savić Institute, Vojvode Stepe 51,11000 Belgrade, Republic of Serbia
⁴ Harvard School of Public Health, Harvard University, Boston, MA 02115, USA
⁵ Bioengineering Research and Development Center, 34000 Kragujevac, Republic of Serbia

Supplementary Information

Fig. S1 Titration curves of fisetin with iron at pH 7 acetate buffer

Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{C}}$ the Royal Society of Chemistry 2011

c)

Fig. S2 Titration curves of fisetin with iron at pH 9 phosphate buffer. Inset: complex absorbance at 420 nm *versus* [Fe] concentration (a) titration curves of fisetin with iron at pH 4 phosphate buffer (b) titration curves of catechin with iron at pH 4 acetate buffer (c)

Fig. S3 Raman spectrum of solid fisetin (a) Raman spectra of fisetin and iron-fisetin complex at pH 9 acetate buffer (b) curve fitting analysis of the 1900-1000 cm⁻¹ Raman region of fisetin spectrum at pH 9 (c) curve fitting analysis of the 2200-1000cm⁻¹ Raman region of iron-fisetin complex spectrum at pH 9 (d)

Fig.S4 Raman spectra of fisetin and iron-fisetin complex at pH 4 phosphate buffer

a)

b)

Fig. S5 Curve fitting analysis of the 2000-1000 cm⁻¹ Raman region of fisetin spectrum at pH 7. Inset: Raman spectra of fisetin and iron-fisetin complex at pH 7 phosphate buffer (a) curve fitting analysis of the 2200-1000cm⁻¹ Raman region of iron-fisetin complex spectrum at pH 7 (b)

b)

Fig. S6 Iron recovery from iron-fisetin complex (pH 7) by EDTA (a) (1-fisetin; 2: complex; 3: 0.3 mM EDTA ; 4: 1.5 mM EDTA; 5: 3.1 mM EDTA 6: 4.8 mM EDTA 7:6.5 mM EDTA 8: 11.5mM EDTA; and citric acid (b) (1-fisetin; 2: complex; 3: 0.3 mM citric acid; 4: 1.5 mM citric acid; 5: 3.1 mM citric acid 6: 4.8 mM citric acid 7:6.5 mM citric acid 8: 8.1 mM citric acid)

Fig. S7 Deacay of DPPH $(1.5 \times 10^{-4} \text{ moldm}^{-3})$ visible absorbance at 517 nm by fisetin (\circ)(5x10⁻⁵ moldm⁻³ in ethanol) and iron-fisetin complex (\bullet) (1:1, in ethanol) (a) and iron-fisetin complex (1:1) in acetate buffer pH 7 (b)

Fig. S8 Geometry optimized structure of the 1:1 iron-fisetin complex and the calculated electronic spectra of the supposed complex structure

1:1 iron-fisetin complex

E=-3474.02053976 Hartree

Н	0.53207200	-1.20313000	0.01252000
0	3.17339100	-1.27659500	0.07567100
Н	-2.58298400	3.70091300	-0.00772900
0	-4.27572200	2.67169500	-0.00765800
Fe	5.11964100	-0.84690800	-0.18544000
0	6.73604200	-1.65041000	0.26748200
Н	6.77960700	-2.61007600	0.32019300
0	-1.72913600	3.22138800	-0.00788400
С	-3.52094200	1.68154400	-0.00621000
С	-5.29558900	-0.09466100	-0.00063100
Н	-6.68624600	-1.72497500	0.00496400
С	1.02343000	-0.24044100	0.01736500
С	2.42675400	-0.21090400	0.04218400
С	-2.07954800	1.91494300	-0.00618100
С	-3.94277100	0.29900600	-0.00305100
С	-5.64366000	-1.42717000	0.00280600
С	-1.17224300	0.88622600	-0.00205100
С	-2.96047200	-0.70392000	-0.00164800
С	-4.63296800	-2.41344100	0.00385800
С	0.28635300	0.94588800	0.00784600
0	-1.63668600	-0.40403600	-0.00231600
С	-3.29081300	-2.05757700	0.00134600
Н	-5.87875200	-3.87826900	0.01046100
0	4.41475300	1.03775700	0.10084600
С	3.12293700	1.07084300	0.05424500
0	-4.92330400	-3.73942600	0.00761200
Н	-2.51556700	-2.81243600	0.00259000
С	0.98176000	2.19977700	0.01472600
С	2.35483900	2.25986600	0.03562400
Н	0.41450400	3.11706800	0.00557300
Н	2.86828700	3.21421200	0.04280400
Н	-6.05870200	0.67343700	-0.00132100

- 1 12 1.0
- 2 13 1.5
- 3 8 1.0
- 492.0

cis 1:2 iron-fisetin complex

E=-3474.02013920 Hartree

01

Н	0.00000000	0.00000000	0.00000000
Н	0.00000000	0.00000000	2.28723545
0	0.93749960	0.00000000	-0.22000135
С	1.08218768	-0.00716460	2.20067997
С	1.68238910	-0.00867353	0.92294121
Н	1.43586229	-0.01742571	4.31900248
С	1.87317586	-0.01605075	3.32838039
Н	1.28113888	0.46429974	12.58015633
Н	2.17511526	0.29772965	10.26518960
С	3.06019014	-0.01967238	0.78483642
Н	1.84053772	0.67704983	14.78956866
С	2.35060552	0.49504697	12.39628452
Н	3.51819452	-0.02162338	-0.19532307
С	3.27818370	-0.02684335	3.22159015
С	2.84099502	0.40396239	11.11252806
С	3.84934797	-0.02941102	1.93774963
0	2.80243119	0.71921240	14.76801906
0	3.74902890	-0.03192747	5.55359791
С	3.24418661	0.62550829	13.48177142
С	4.15987777	-0.03529258	4.35812193
0	4.11573062	0.24055775	8.49875229
С	4.22891725	0.44091407	10.86865623
0	5.18581550	-0.04372497	1.76523318
С	4.80628862	0.34929477	9.55515366
С	4.61324913	0.66214651	13.27497694
Н	6.19712477	-2.01273546	7.69209301
Н	6.08530265	-1.97854487	6.16472466
0	5.55002426	-1.94527609	6.97613828
Н	4.51006269	2.51513742	7.22545001
Fe	5.23657584	0.09486574	6.85804920
Н	6.04992280	2.41335606	7.05210155
0	5.20459195	2.14240152	6.66793329
С	5.59597580	-0.06036823	4.13050483
С	5.09592374	0.56802560	11.96763772
С	6.06952002	-0.06238148	2.82600699
Н	5.29627483	0.75986563	14.10828523
0	6.34357110	-0.09726982	5.21201394

Н	6.97315070	-0.14838592	0.26699166
С	6.25342538	0.38359196	9.41904956
0	6.71461809	0.28698533	8.19157203
0	6.43350658	0.60426762	11.80350360
С	7.45936871	-0.09088703	2.38363259
С	7.76068466	-0.13423834	1.00684994
С	7.03171480	0.51482827	10.56330456
Н	8.30446361	-0.03726713	4.36214968
С	8.52376439	-0.07312422	3.30578154
С	9.07231374	-0.16032273	0.56544757
0	9.33320355	-0.20395667	-0.77472314
С	8.48634025	0.57746781	10.64631196
Н	8.82052639	0.40822278	8.52587336
Н	8.53486450	0.76510656	12.81080684
С	9.84013981	-0.09775649	2.85450682
С	9.29112775	0.50921162	9.49215921
С	9.11602057	0.70949282	11.90143391
Н	10.29077038	-0.21785312	-0.89838251
С	10.12083049	-0.14206757	1.49544924
Н	10.65671457	-0.08229966	3.57101046
0	11.38922999	-0.17097414	0.95868565
С	10.67717740	0.57209502	9.60202718
С	10.49479043	0.77111528	12.00286232
Н	11.29197553	0.51912560	8.70797319
Н	12.04976210	-0.15730959	1.65814675
С	11.28250484	0.70203328	10.84472839
0	11.07617703	0.89899768	13.23148103
Н	12.03448203	0.92492766	13.11499865
0	12.64165851	0.77194855	11.04975460
Н	13.11196215	0.71900809	10.21189970

4 5 1.5 7 2.0

5 10 2.0 6 7 1.0

- 7 14 1.5
- 8 12 1.0
- 9 15 1.0

trans 1:2 iron-fisetin complex

E=-3474.02053976 Hartree

01

Н	0.00000000	0.00000000	0.00000000
0	0.00000000	0.00000000	0.96564022
Н	0.18596521	0.00000000	6.81918070
Н	-0.58701099	0.43809937	3.43977034
0	0.46969163	-0.19469007	9.37720790
С	-1.04574200	0.76623023	1.39623982
Н	0.38841203	-0.13336404	10.33476567
0	-1.60248063	1.16639844	-0.85130753
С	-1.26253483	0.92855364	2.75341139
С	-0.56858958	0.51888696	7.39528654
Н	-2.22674866	1.63074190	-1.41751452
С	-1.89987967	1.38847105	0.47480987
С	-0.54015411	0.50055807	8.77938519
0	-1.58749528	1.21812501	5.40786711
С	-1.59159763	1.22263574	6.75456684
С	-2.33463454	1.71281251	3.22783566
С	-2.95889021	2.16444047	0.92641151
С	-1.52288802	1.17918808	9.53297569
Н	-1.48100128	1.15530919	10.61758328
С	-2.54464849	1.87394057	4.66146211
С	-3.18396505	2.33153092	2.28945915
Н	-3.61717479	2.64536284	0.20832795
С	-2.58413884	1.90533874	7.47984781
С	-2.52543035	1.86886841	8.88805078
С	-3.56369978	2.57962607	5.29240957
Н	-4.00624887	2.93588506	2.64145866
С	-3.60050314	2.60757839	6.74535529
Н	-3.28730791	2.39932720	9.44549274
0	-4.53002659	3.22180210	4.68284355
0	-4.54391493	3.24634857	7.30299882
0	-4.34006900	5.81757664	6.10462440
Н	-4.41797860	6.34681555	5.30094549
Н	-4.76195429	6.32440603	6.81534737
Fe	-5.64906105	4.23935750	5.97789324
Н	-6.53617148	2.15431166	5.14043545
Н	-6.88013602	2.13189634	6.65483917
0	-6.95805283	2.66113817	5.85116302

0	-6.75420643	5.23236587	4.65278733
0	-6.76809461	5.25691470	7.27294198
Н	-8.01081359	6.07938607	2.51029214
С	-7.69761850	5.87113625	5.21042992
Н	-7.29187415	5.54283187	9.31432849
С	-7.73442126	5.89908937	6.66337562
С	-8.77269142	6.60984506	3.06773317
С	-8.71398309	6.57337610	4.47593646
Н	-7.68094850	5.83335803	11.74745798
С	-8.11415766	6.14718701	9.66632705
С	-8.75347299	6.60477643	7.29432248
Н	-9.81712141	7.32340248	1.33820163
С	-9.77523435	7.29952459	2.42280827
С	-8.33923234	6.31427983	11.02937408
С	-8.96348710	6.76590586	8.72794925
С	-9.70652429	7.25607909	5.20121743
0	-9.71062620	7.26059199	6.54791749
С	-10.75796794	7.97815559	3.17639781
С	-9.39824223	7.09025124	11.48097382
Н	-9.07138057	6.84797214	13.37329866
С	-10.72953188	7.95982751	4.56049645
С	-10.03558483	7.55016696	9.20237128
0	-9.69564083	7.31232602	12.80709154
Н	-11.68653365	8.61207615	1.62101794
С	-10.25237856	7.71249231	10.55954352
0	-11.76781293	8.67340317	2.57857477
Н	-10.71110866	8.04062123	8.51601232
Н	-11.48408623	8.47871664	5.13660262
0	-11.29812024	8.47872353	10.99014217
Н	-11.29812112	8.47872292	11.95578146

1:1 iron-fisetin complex		trans 1:2 iron-fisetin		cis 1:2 iron-fisetin		
			complex		complex	
Freq.	IR intensity	Freq.	IR	Freq.	IR	
(cm^{-1})	5	(cm^{-1})	intensity	(cm^{-1})	intensity	
35.13	0.16	10.81	0.02	10.42	0.02	
60.85	0.22	14.62	0.02	14.66	0.02	
65.53	0.50	21.94	0.03	21.57	0.03	
84.37	0.22			27.82	0.02	
91 49	4 67	32.85	3 4 3	31.37	2.16	
113 61	3.08			42.74	1 77	
118.48	2.34			43.87	0.08	
129.00	14.43	54 35	3 10	62.03	1.04	
157.92	13.84	0 1.00	5.10	65.22	1.53	
186.89	2 53			68.80	3.86	
201.98	2.55	84 93	3.26	72 37	0.53	
213.93	12 19	95 50	0.19	95.21	5.92	
213.33	3.06	95.50	0.19	101.07	2.92	
229.30	2.00			110.76	4.03	
233.13	2.29	121 22	0.22	110.70	4.03	
277.04	1.27	121.23	0.55	121.56	0.24	
292.20	1.27			121.30	0.34	
211.41	11.8/	127.96	1.01	127.82	1.54	
344.84	6.24	15/.80	1.81	138.29	3.13	
352.95	88.4/	156.82	44.13	139.84	14.06	
362.43	4.77			158.42	25.75	
381.14	161.23	105.00	40.00	181.42	4.84	
396.31	17.59	197.29	40.30	197.54	11.38	
404.10	4.23	204.07	17.85	206.45	34.12	
442.53	0.80			208.17	19.72	
450.22	0.37	212.80	25.29	216.14	1.28	
467.49	1.59	234.17	111.48	229.35	62.39	
511.29	6.77			234.69	1.83	
542.80	15.32	236.74	3.10	236.88	53.89	
549.72	2.77	244.28	208.94	245.35	189.09	
564.95	23.22			252.21	3.21	
608.97	96.54			256.76	7.98	
613.43	117.23			259.77	2.50	
622.03	70.54	267.29	4.05	262.77	16.92	
636.11	2.80	269.82	3.42	266.94	3.28	
644.71	266.44			273.40	6.86	
652.06	306.12			303.32	4.17	
660.99	0.84	310.98	11.54	310.36	12.33	
680.43	12.28	318.57	60.56	310.58	5.48	
680.65	37.54	322.17	32.74	311.43	25.08	
703.02	14.79			317.34	17.90	
709.75	7.64	336.85	34.05	332.20	16.06	
729.33	36.09			345.59	0.63	
732.82	234.88	348.81	16.60	346.29	0.08	
769.24	1.25			351.24	2.36	
820.34	181.94	361.30	0.13	364.86	101.74	
821.01	27.14	361.51	225.79	368.88	122.01	
825.60	34.22			386.02	9.49	
848.21	39.69			387.43	11.38	
858.93	37.32	402.54	49.01	409.06	2.04	
881.59	32.17			412.21	16.57	

Table 1 Vibrational frequencies of fisetin-iron complexes

944.95	0.94	419.65	85.21	418.68	55.01
956.69	6.33			421.73	3.19
971.78	0.85	424.56	12.65	422.75	63.38
980.84	42.78	429.60	121.26	436.55	96.38
1038.66	51.78	445.89	37.20	438.60	40.98
1118.72	32.12			452.68	0.61
1146.53	407.59	452.35	5.44	452.93	6.28
1149.49	32.03			461.85	6.31
1179.25	265.75			466.56	0.39
1202.51	412.57	467.60	2.23	467.31	0.39
1227.00	54.00	468.88	2.40	469.17	3.16
1242.15	33.55			491.17	5.62
1252.56	58.10	496.44	5.69	494.80	4.23
1281.17	1.42			514.87	51.95
1296.72	633.22	519.79	55.59	522.18	3.69
1315.31	567.09			543.34	23.84
1336.15	22.53	547.72	8.15	546.42	2.81
1349.47	157.63			548.21	0.60
1357.90	469.16	553.79	21.77	551.49	10.63
1411.92	72.25			578.21	226.48
1435.99	936.26	588.91	68.93	587.91	13.85
1462.90	106.38			589.08	55.00
1494.89	18.61	597.61	2.99	597.15	0.99
1500.49	409.90			598.00	1.83
1546.95	160.18			629.08	29.63
1592.54	2.05	632.30	64.66	632.66	2.90
1610.33	171.25	633.21	300.38	633.71	7.79
1625.52	94.92			637.66	10.63
1647.04	1001.60			642.37	67.93
1668.78	524.02	645.47	303.32	651.54	0.89
1684.18	33.44	652.51	6.03	652.60	0.38
3194.10	14.13			666.37	10.99
3199.13	23.83	674.06	5.85	672.46	82.93
3220.66	9.70			676.69	27.43
3229.80	1.90			684.13	17.17
3231.88	1.65	685.30	187.65	688.07	148.54
3261.35	4.52	690.07	69.14	694.75	0.75
3521.44	307.27	695.26	1.46	695.43	0.06
3802.13	202.23			701.30	15.38
3840.04	291.33			704.45	191.26
		706.96	24.28	708.08	122.00
				725.89	22.41
		727.94	31.42	727.88	28.64
			0.10	769.21	0.63
		769.28	0.48	769.58	0.41
		801.25	156.24	801.20	65.50
		801.61	0.00	801.78	/8.13
		804.80	0.00	804.50	22.54
		804.89	47.07	806.13	30.89
		810.55	55.27	808.45	1.32
		0.52.50	0.10	809.93	50.63
		852.78	0.18	852.06	22.24
		852.82	48.08	852.46	26.69
		0.5.5.00	24.50	853.42	24.10
		855.92	54.68	856.43	1.64
		007.00	26.07	887.99	15.25
		887.28	36.07	888.75	20.68
		938.19	0.40	932.54	0.01

			934.24	0.13
	959.12	3.10	959.16	0.95
			959.69	2.11
			967.33	23.07
	970.40	28.80	970.60	10.63
			985.68	4.60
	985.42	29.46	985.84	25.38
			1048.94	39.21
	1049.71	73.30	1050.03	24.49
	1130.76	0.03	1130.28	19.45
	1130.78	113.81	1130.77	81.84
	1136.51	0.00	1136.84	9 41
	1136.88	374 46	1137 51	370.81
	1163.45	56.92	1162.47	56 58
	1105.10	00.92	1163 71	31.21
	1180.21	155.06	1178 58	83.46
	1100.21	155.00	1180.26	55.03
	1186.20	452 78	1186.20	254.92
	1100.20	432.70	1187.02	234.52
	1217.88	886.81	1216.10	070.74
<u>├</u>	1217.00	000.01	1210.10	5 25
	1228.00	2.42	1220.09	0.41
	1228.09	2.42	1227.10	0.41
			1228.13	0.27
	1040 (1	0.42	1243.30	10.62
	1243.61	9.43	1244.07	7.27
	1254.97	486.20	1253.67	449.31
	1000.00	(0.00	1258.05	0.50
	1289.33	69.88	1288.52	20.12
			1290.64	29.58
		- / - / -	1320.58	46.03
	1321.18	542.67	1321.24	467.50
	1338.29	311.58	1338.29	256.29
			1338.93	76.29
	1354.00	646.29	1352.48	555.96
			1354.11	82.78
			1359.14	43.75
	1359.59	66.81	1359.48	28.66
	1388.43	137.15	1388.24	63.42
			1388.99	90.29
	1410.99	225.92	1410.81	152.29
			1412.12	9.31
	1439.98	994.09	1438.00	376.17
			1443.16	480.16
			1494.53	11.61
	1495.18	45.63	1495.79	27.84
	1502.77	0.41	1503.19	184.95
	1502.78	432.17	1504.96	251.61
			1545.42	80.69
	1546.78	255.45	1548.77	78.56
	1556.22	582.36	1556.54	201.15
			1557.44	335.33
			1567.69	29.40
	1567.35	223.20	1573.78	153.17
	1580.79	670.99	1580.90	398.69
	1585.40	0.00	1593.00	206.13
	1625.85	442.12	1626.71	226.79
			1629.05	148.15
	1632.48	23.36	1630.33	33.63
L	1002.10			22.00

Supplementary Material (ESI) for Dalton Transactions
This journal is © the Royal Society of Chemistry 2011

		1644.86	33.57
		1646.19	22.50
1645.22	53.22	1672.00	22.24
1672.31	0.08	1672.71	30.13
1672.33	51.88	1676.72	43.29
1680.41	486.94	1680.09	264.12
		1681.03	241.92
3165.61	56.18	3163.89	25.18
		3166.50	26.29
3173.51	45.39	3173.21	24.15
		3174.92	23.19
3222.23	4.97	3222.35	2.17
3222.24	0.03	3222.67	2.88
3234.63	1.44	3234.35	1.20
3234.64	0.74	3234.66	1.14
3243.53	3.71	3244.31	1.70
3243.53	0.01	3244.49	1.69
3255.00	24.09	3254.48	8.85
3255.03	0.56	3255.51	10.60
		3597.25	209.94
3637.06	372.94	3737.95	42.40
3788.40	216.12	3776.29	124.52
3788.45	6.22	3787.96	99.44
3823.86	194.65	3788.66	112.02
3823.91	0.73	3823.10	99.52
3829.61	0.02	3823.68	110.85
3830.05	101.02	3839.73	74.02
3839.96	202.48	3841.09	104.68
3840.01	0.31	3846.25	52.66