Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study

Éva A. Enyedy,*a Michael F. Primik,b Christian R. Kowol,b Vladimir B. Arion,b Tamás Kiss,a,c Bernhard K. Kepplerb

aDepartment of Inorganic and Analytical Chemistry, University of Szeged, P.O. Box 440, H-6701 Szeged, Hungary. E-mail: enyedy@chem.u-szeged.hu; Fax: +36 62 420505
bUniversity of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria.
cBioinorganic Chemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, P.O. Box 440, Szeged H-6701, Hungary

SUPPORTING INFORMATION

Concentration distribution curves, ¹H NMR spectra, fluorescence emission spectra for TSC ligands 2-3

Definition of the stability constants of the metal complexes 4

UV vis absorption spectra and concentration distribution curves of Fe³⁺ complexes 5

UV vis absorption spectra, ESI-MS spectra, 3D fluorescence spectra, concentration distribution curves and ¹H NMR spectra of Ga³⁺ complexes 6-10

Table for cytotoxicity of TSC ligands and their Ga³⁺ and Fe³⁺ complexes 11
Fig. S1 Concentration distribution curves for species of AcTSC calculated with the constants obtained by UV/vis spectrophotometry depicted together with the absorbance values plotted against pH at 348 nm (■). $c_{\text{AcTSC}} = 5 \times 10^{-5}$ mol dm$^{-3}$; $t = 25.0^\circ$C, $I = 0.10$ mol dm$^{-3}$ (KCl) in 30% (w/w) DMSO/H$_2$O.

Fig. S2 1H NMR spectra of Triapine recorded at different pH values ($c_{\text{ligand}} = 4.0 \times 10^{-3}$ mol dm$^{-3}$ in 30% (w/w) [D$_6$]DMSO/D$_2$O). For the proton assignments see Table S1 in ref. 14.
Fig. S3 Fluorescence emission spectra of Triapine recorded at different pH values (A) and concentration distribution curves for Triapine with the intensity of emission recorded at 458 nm (B) \{\lambda_{EX} = 360 \text{ nm}; c_{\text{ligand}} = 1.02 \times 10^{-5} \text{ mol dm}^{-3}; t = 25.0 ^\circ \text{C}, I = 0.10 \text{ mol dm}^{-3} (\text{KCl}) \text{ in } 30\% \text{ (w/w) DMSO/H}_{2}\text{O}\}
Definition of the stability constants of the metal complexes collected in Table 4

General formula:

\[M = \text{metal ion; } L = \text{deprotonated form of the ligand; } H = H^+ \]

Charges are omitted for simplicity.

\[\beta(M_{p}L_{q}H_{r}) = \frac{[M_{p}L_{q}H_{r}]}{[M][L]^q[H]^r} \quad pM + qL + rH \rightleftharpoons M_{p}L_{q}H_{r} \]

Constant: \(\beta(MLH) = \frac{[MLH]}{[M][L][H]} \quad M + L + H \rightleftharpoons MLH \)

Equilibrium:

\[\beta(ML) = \frac{[ML]}{[M][L]} \quad M + L \rightleftharpoons ML \]

\[\beta(MLH_{1}) = \frac{[MLH_{1}]}{[M][L][H]^{-1}} \quad M + L - H \rightleftharpoons MLH_{1} \]

\((-H = \text{deprotonation of a coordinated water molecule})\)

\[\beta(ML_{2}H) = \frac{[ML_{2}H]}{[M][L]^2[H]} \quad M + 2L + H \rightleftharpoons ML_{2}H \]

\[\beta(ML_{2}) = \frac{[ML_{2}]}{[M][L]^2} \quad M + 2L \rightleftharpoons ML_{2} \]

\[\beta(ML_{2}H_{1}) = \frac{[ML_{2}H_{1}]}{[M][L]^2[H]^{-1}} \quad M + 2L - H \rightleftharpoons ML_{2}H_{1} \]

\((-H = \text{deprotonation of a coordinated water molecule or coordination of OH}^{-})\)

Derived stability constants:

\(\log \beta([ML_{2}]) = 2 \times \log \beta(H_{2}L) = \log K' \)

\[K' = \frac{[ML_{2}][H]^4}{[M][H_{2}L]^2} \quad M + 2H_{2}L \rightleftharpoons ML_{2} + 4H \]
Fig. S4 UV–vis absorption spectra of FeIII–FaTSC system recorded at different pH values together with the molar absorptivity values of the individual ligand species (blue lines) (A). Concentration distribution curves of complexes formed in the FeIII–FaTSC system plotted against the pH with the measured (●) and calculated (red dashed line) absorbance values at 448 nm. *Inset shows the calculated individual spectrum of the [FeIIIL]$^{2+}$ and [FeIIIL$_2$]$^{+}$ species.* (B) $[c_{\text{ligand}} = 5.0 \times 10^{-5}$ mol dm$^{-3}$; M:L = 1:2; $t = 25.0 ^\circ C$, $I = 0.10$ mol dm$^{-3}$ (KCl) in 30% (w/w) DMSO/H$_2$O*}
Fig. S5 UV–vis absorption spectra of GaIII–PTSC system recorded at different pH values: pH < 2; $c_{\text{ligand}} = 2.0 \times 10^{-5}$ mol dm$^{-3}$; M:L = 1:1 (solid lines) and 0:1 (grey dashed line). \{t = 25.0°C, I = 0.10 mol dm$^{-3}$ (KCl) in 30% (w/w) DMSO/H$_2$O\}
Fig. S6 ESI-MS spectra recorded in the GaIII – PTSC system at pH 4.5 (A) and pH 9.5 (B) in positive mode at metal-ion-to-ligand ratio 1:2, $c_{\text{ligand}} = 1 \times 10^{-4}$ mol dm$^{-3}$.

(ESI-MS spectra were recorded on a Waters Q-TOF Premier instrument (Micromass MS Technologies, Manchester, UK) operating in positive ion mode. Samples were introduced into the ESI source by the syringe pump of the instrument. N$_2$ was used as nebulizer and cone gas, and the source temperature was set to 120 $^\circ$C. The capillary voltage was set to 3.8 kV. Argon was employed as the collision gas and the collision energy was –25 eV. pH was set by the addition of aqueous NH$_3$ and HNO$_3$.)
Fig. S7 3D fluorescence spectra of Triapine (A) and GaIII–Triapine (B) systems \{c\textsubscript{ligand} = 4.0 × 10-6 mol dm3; GaIII: Triapine = 1:1; pH = 3.70; λ\textsubscript{EX} = 300-600 nm; \(t = 25.0^\circ\text{C}, I = 0.10\) mol dm3 (KCl)\}

Fig. S8 Fluorescence emission intensity recorded at 495 nm for Triapine and for GaIII–Triapine (1:2) system at different pH values \{λ\textsubscript{EX} = 430 nm; c\textsubscript{ligand} = 1.00 × 10-5 mol dm3; \(t = 25.0^\circ\text{C}, I = 0.10\) mol dm3 (KCl) in 30\% (w/w) DMSO/H\textsubscript{2}O\}
Fig. S9 Concentration distribution curves of species formed in the GaIII – PTSC system plotted against the pH at metal-ion-to-ligand ratio 1:2 calculated on the basis of the pH-potentiometric results, $c_{\text{ligand}} = 1 \times 10^{-3}$ mol dm$^{-3}$. {ligand species (grey lines); GaIII containing species (colored lines)}
Fig. S10 1H NMR spectra of GaIII – PTSC system recorded at different pH values at metal-ion-to-ligand ratio 1:2 \{c$_{\text{ligand}}$ = 1.0 \times 10$^{-3}$ mol dm$^{-3}$ in 30\% (w/w) [D$_6$]DMSO/D$_2$O\}.

Fig. S11 1H NMR spectra of [GaL$_2$]$^+$ complex of PTSC \{c$_{\text{ligand}}$ = 1.0 \times 10$^{-3}$ mol dm$^{-3}$; M:L = 1:2; 30\% (w/w) [D$_6$]DMSO/D$_2$O\} and proton assignments.
Table S1 Cytotoxicity of R-N-Heterocyclic TSCs and their GaIII and FeIII bis-ligand complexes in two different human cancer cell lines (IC\textsubscript{50} values in μmol dm-3)a

<table>
<thead>
<tr>
<th>cell line</th>
<th>species tested</th>
<th>Triapine</th>
<th>FTSC</th>
<th>PTSC</th>
<th>APTSC</th>
<th>FaTSC</th>
<th>AcTSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>41M</td>
<td>HL \quad b</td>
<td>0.45</td>
<td>2.9</td>
<td>0.0040</td>
<td>0.210</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>b \quad \text{[GaIIIL\textsubscript{2}]}+</td>
<td>0.50</td>
<td>3.0</td>
<td>0.0058</td>
<td>0.148</td>
<td>6.8</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>b \quad \text{[FeIIIL\textsubscript{2}]}+</td>
<td>3.0</td>
<td>5.4</td>
<td>0.22</td>
<td>10.4</td>
<td>>200</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>c \quad \text{ratio}</td>
<td>6.7</td>
<td>1.9</td>
<td>55</td>
<td>50</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>SK-BR-3</td>
<td>HL \quad b</td>
<td>0.52</td>
<td>3.2</td>
<td>0.0098</td>
<td>0.290</td>
<td>5.6</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>b \quad \text{[GaIIIL\textsubscript{2}]}+</td>
<td>0.70</td>
<td>3.0</td>
<td>0.0100</td>
<td>0.162</td>
<td>9.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>b \quad \text{[FeIIIL\textsubscript{2}]}+</td>
<td>3.4</td>
<td>9.8</td>
<td>0.30</td>
<td>12.0</td>
<td>>200</td>
<td>>200</td>
</tr>
<tr>
<td></td>
<td>c \quad \text{ratio}</td>
<td>6.5</td>
<td>3.1</td>
<td>31</td>
<td>41</td>
<td>35</td>
<td>56</td>
</tr>
</tbody>
</table>

a Taken from ref. 8. b The IC\textsubscript{50} values are doubled for the comparison as the \textit{bis}-ligand complexes consist of two ligands. c IC\textsubscript{50} of \text{[FeIIIL\textsubscript{2}]}+/ IC\textsubscript{50} of HL.