Supporting Information for

Synthesis of Cuprous Oxide Nanocomposite Electrodes by Room-Temperature Chemical Partial Reduction

Kyung-Soo Park, a† Seung-Deok Seo, a† Yun-Ho Jin, a Seung-Hun Lee, a Hyun-Woo Shim, a
Du-Hee Lee, b and Dong-Wan Kim*a

aDepartment of Materials Science and Engineering, Ajou University, Suwon 443-749, Korea

bLS Mtron, Anyang 431-749, Korea

† S. D. Seo and K. S. Park contributed equally to this work.

* Author to whom any correspondence should be addressed. E-mail: dwkim@ajou.ac.kr
Fig. S1. Typical FE-SEM image of as-prepared Cu(OH)$_2$ precursor with nanowire morphology.
Fig. S2. Low-magnification FE-SEM images of the samples prepared by adding various amounts of N$_2$H$_4$: (a) 0.5 mL, (b) 4.0 mL, (c) 8.0 mL, and (d) 12.0 mL.
Fig. S3. (a) XRD patterns and FE-SEM images of Cu$_2$O particles prepared by adding 4.0 mL of N$_2$H$_4$ at different synthetic temperatures: (b and c) 10 °C, and (d and e) room temperature.
Fig. S4. (a) Bright-field TEM and (b) HAADF images of a Cu/Cu₂O nanocomposite (8.0 mL of N₂H₄).
Fig. S5. Typical FE-SEM images of the mixed commercial Cu/Cu$_2$O (10 wt% Cu) powders after mechanical mixing for 12 hrs.
Fig. S6. Rate capabilities for the chemically synthesized Cu/Cu$_2$O nanocomposite electrodes with various compositions.