Electronic supplementary information

CoII, MnII and CuII-directed coordination polymers with mixed tetrazolate-dicarboxylate heterobridges exhibiting spin-canted, spin-frustrated antiferromagnetism and a slight spin-flop transition

En-Cui Yang*, Zhong-Yi Liu, Xiao-Yun Wu, Hong Chang, En-Chan Wang and Xiao-Jun Zhao*

\begin{center}
\includegraphics[width=\textwidth]{Scheme_S1}
\end{center}

\textbf{Scheme S1} Possible binding modes of anionic atz' ligand.
Fig. S1 TG curves for 1 – 3.
Fig. S2 Simulated (red) and experimental (blue) X-ray powder diffraction patterns for 1 – 3.
Fig. S3 Local coordination environments of CoII atoms in 1 (Hydrogen atoms were omitted for clarity. Symmetry codes: A = 1 − x, 2 − y, 2 − z; B = 2 − x, 2 − y, 2 − z; C = x, 1 + y, z; D = x − 1, y, z).
Fig. S4 2D covalent layer of 1 jointly extended by atz' and nip^2 connectors (Terminal aqua ligands were omitted for clarity).
Fig. S5 3D supramolecular network of 1 formed by interlayer N–H···O hydrogen-bonding interactions.
Table S1 Hydrogen-bonds distances (Å) and angles (°) for 1a

<table>
<thead>
<tr>
<th>Donor – H···Acceptor</th>
<th>D – H</th>
<th>H ··· A</th>
<th>D···A</th>
<th>D – H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(5)–H(5B)···O(1)$^{#1}$</td>
<td>0.86</td>
<td>2.41</td>
<td>2.947(3)</td>
<td>121</td>
</tr>
</tbody>
</table>

a Symmetry code: $^{#1} 1-x, 2-y, 1-z.$
Fig. S6 The SBU of 2 with atom-numbering scheme in the asymmetric unit (H atoms were omitted for clarity. Symmetry code: A = 1 – x, 1 – y, 1 – z).

Fig. S7 3D supramolecular network of 2 formed by interlayer π···π stacking interactions.
Fig. S8 Plots of χ_M and χ_MT vs T at different fields for 1.
Fig. S9 Real (χ') and imaginary (χ'') ac magnetic susceptibilities in zero applied dc field and an ac field of 3.5 Oe at different frequencies for 1.
Fig. S10 Field dependence of magnetization at 2 K for 1 (left) and 3 (right), respectively.
Fig. S11 Temperature dependence of χ_M for 2 under different dc fields.