Electronic Supplementary Information

Ni(II) and Pd(II) pyridinyl oxazolidine-compounds: synthesis, X-ray characterisation and catalytic activities in the aza-Michael reaction

G. Attilio Ardizzoia, Stefano Brenna,* and Bruno Therrien

Table of contents

Figs. S1-S3 \(^{1}\)H and \(^{13}\)C NMR spectra of ligand \(\text{ppo}\)
Figs. S4-S6 \(^{1}\)H and \(^{13}\)C NMR spectra of complex 1
Fig. S7 \(^{1}\)H NMR spectrum (CD\(_2\)Cl\(_2\), RT) of complex 2
Figs. S8-S11 Magnetic moment measurements conducted on compound 2 via \(^{1}\)H NMR solution at different temperatures, in CD\(_2\)Cl\(_2\)
Figs. S12-S15 Magnetic moment measurements conducted on compound 2 via \(^{1}\)H NMR solution at different temperatures, in CD\(_3\)OD
Fig. S16 Absolute energy of the five possible isomers of [Ni(ppo)\(_2\)Cl\(_2\)]
Figs. S17-S19 Mass spectra of the products of aza-Michael reactions
Fig. S1. 1H NMR (CDCl$_3$, 298 K) of ligand ppo

Fig. S2. 13C NMR (CDCl$_3$, 298 K) of ligand ppo
Fig. S3. 1H-13C HETCOR (CDCl$_3$, 298 K) of ligand ppo

Fig. S4. 1H NMR (CD$_3$CN, 298 K) of complex [Pd(N,N'-ppo)Cl$_2$] (I)
Fig. S5. 13C NMR (CD$_3$CN, 298 K) of complex [Pd(N,N'-ppo)Cl$_2$] (1)

![Fig. S5. 13C NMR (CD$_3$CN, 298 K) of complex [Pd(N,N'-ppo)Cl$_2$] (1)](image-url)

Fig. S6. 1H-13C HETCOR (CD$_3$CN, 298 K) of complex [Pd(N,N'-ppo)Cl$_2$] (1)

![Fig. S6. 1H-13C HETCOR (CD$_3$CN, 298 K) of complex [Pd(N,N'-ppo)Cl$_2$] (1)](image-url)
Fig. S7. 1H NMR (CD$_2$Cl$_2$, RT) of complex [Ni(N-O-ppo)$_2$Cl$_2$] (2)

Fig. S8. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_2$Cl$_2$/toluene, at 298 K.

Fig. S9. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_2$Cl$_2$/toluene, at 273 K.
Fig. S10. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_2$Cl$_2$/toluene, at 228 K.

Fig. S11. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_2$Cl$_2$/toluene, at 308 K.
Fig. S12. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_3$OD/toluene, at 298 K.

![NMR spectrum of compound 2 at 298 K.]

Fig. S13. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_3$OD/toluene, at 273 K.

![NMR spectrum of compound 2 at 273 K.]

Fig. S14. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_3$OD/toluene, at 228 K.

![NMR spectrum of compound 2 at 228 K.]
Fig. S15. Magnetic moment of compound 2 via 1H NMR (Evans’ method), in CD$_3$OD/toluene, at 308 K.

Fig. S16. Absolute energy of the five possible isomers of [Ni(ppo)$_2$Cl$_2$]. (ttt-[Ni(ppo)$_2$Cl$_2$] opt: complex 2 optimized in vacuum or acetonitrile)
Fig. S17. Conjugate addition of piperidine to benzalacetone catalysed by complexes 1 and 2: mass spectrum of the product (calc. for M\(^+\): m/z = 231.16).

Fig. S18. Conjugate addition of morpholine to benzalacetone catalysed by complexes 1 and 2: mass spectrum of the product (calc. for M\(^+\): m/z = 233.14).
Fig. S19. Conjugate addition of dimethylamine to benzalacetone catalysed by complexes 1 and 2: mass spectrum of the product (calc. for M$: m/z = 191.13$).