Electronic Supplementary Information (ESI) for

Ru cyclooctatetraene precursors for MOCVD

Tatsuya Ando, Naoki Nakata, Kazuharu Suzuki, Takahiro Matsumoto and Seiji Ogo*

*To whom correspondence should be addressed. E-mail: ogotcm@mail.cstm.kyushu-u.ac.jp
A Table of Contents

Table S1, A table of contents page S1
Fig. S1, IR spectrum of 2. page S2
Fig. S2, IR spectrum of 3. page S3
Fig. S3, 1H NMR spectrum of 2. page S4
Fig. S4, 1H NMR spectrum of 3. page S5
Fig. S5, TG-DTA analysis of 1. page S6
Fig. S6, TG-DTA analysis of 2. page S7
Fig. S7, TG-DTA analysis of 3. page S8
Fig. S8, A SEM image of a Ru film deposited from 1. page S9
Fig. S9, A SEM image of a Ru film deposited from 3. page S10
Fig. S10, An AFM image of a Ru film deposited from 1. page S11
Fig. S11, An AFM image of a Ru film deposited from 3. page S12
Fig. S12, An XRD pattern of a Ru film deposited from 2. page S13
Fig. S13, An XPS spectrum of a Ru film deposited from 1. page S14
Fig. S14, An XPS spectrum of a Ru film deposited from 3. page S15
Fig. S15, A SEM image of hole with aspect ratio 40:1 deposited from 1. page S16
Fig. S16, A SEM image of hole with aspect ratio 40:1 deposited from 3. page S17
Table S1. A table of contents

<table>
<thead>
<tr>
<th></th>
<th>[Ru(η⁴-COT-H)-(CO)₃] (1)</th>
<th>[Ru(η⁴-COT-Me)-(CO)₃] (2)</th>
<th>[Ru(η⁴-COT-Et)-(CO)₃] (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTIR</td>
<td>previous reported</td>
<td>Fig. S1</td>
<td>Fig. S2</td>
</tr>
<tr>
<td>¹H NMR</td>
<td>previous reported</td>
<td>Fig. S3</td>
<td>Fig. S4</td>
</tr>
<tr>
<td>X-ray</td>
<td>previous reported</td>
<td>Fig. 4</td>
<td>–</td>
</tr>
<tr>
<td>TG-DTA</td>
<td>Fig. S5</td>
<td>Fig. S6</td>
<td>Fig. S7</td>
</tr>
<tr>
<td>melting point</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
</tr>
<tr>
<td>decomposition</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
</tr>
<tr>
<td>vapour pressure</td>
<td>Table 1</td>
<td>Table 1</td>
<td>Table 1</td>
</tr>
<tr>
<td>SEM</td>
<td>Fig. S8</td>
<td>Fig. 6</td>
<td>Fig. S9</td>
</tr>
<tr>
<td>AFM</td>
<td>Fig. S10</td>
<td>Fig. 7</td>
<td>Fig. S11</td>
</tr>
<tr>
<td>XRD</td>
<td>–</td>
<td>Fig. S12</td>
<td>–</td>
</tr>
<tr>
<td>XPS</td>
<td>Fig. S13</td>
<td>Fig. 8</td>
<td>Fig. S14</td>
</tr>
<tr>
<td>SEM</td>
<td>Fig. S15</td>
<td>Fig. 9</td>
<td>Fig. S16</td>
</tr>
</tbody>
</table>
Fig. S1 IR spectrum of 2 as a KBr disk.
Fig. S2 IR spectrum of 3 as a KBr disk.
Fig. S3 1H NMR spectrum of 2 in CDCl$_3$.
Fig. S4 1H NMR spectrum of 3 in CDCl$_3$. †: Impurity, 1.
Fig. S5 TG-DTA analysis of 1 (flow gas: N$_2$, flow rate: 100 mL min$^{-1}$, heating rate: 5 °C min$^{-1}$).
Fig. S6 TG-DTA analysis of 2 (flow gas: N$_2$, flow rate: 100 mL min$^{-1}$, heating rate: 5 °C min$^{-1}$).
Fig. S7 TG-DTA analysis of 3 (flow gas: N₂, flow rate: 100 mL min⁻¹, heating rate: 5 °C min⁻¹).
Fig. S8 A SEM image of a Ru film deposited from 1 at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm).
Fig. S9 A SEM image of a Ru film deposited from 3 at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm).
Fig. S10 An AFM image of a 17 nm thick Ru film deposited from 1 at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). (a) Two- and (b) three-dimensional views.
Fig. S11 An AFM image of a 49 nm thick Ru film deposited from 3 at 175 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). (a) Two- and (b) three-dimensional views.
Fig. S12 (a) An XRD pattern of Ru film deposited from 2 at 165 °C on SiO₂ substrates under a flow of N₂ (10 sccm) and H₂ (1 sccm). (b) Magnification of Ru(100), Ru(002) and Ru(101) peaks in (a).
Fig. S13 (a) An XPS spectrum of a Ru film deposited from 1 at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). Peaks for O 1s and Si 2p originate from a SiO₂ substrate. (b) Magnification of Ru 3d₃/₂ and 3d₅/₂ peaks in (a).
Fig. S14 (a) An XPS spectrum of a Ru film deposited from 3 at 175 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm). Peaks for O 1s and Si 2p originate from a SiO₂ substrate. (b) Magnification of Ru 3d₃/₂ and 3d₅/₂ peaks in (a).
Fig. S15 (a) A SEM image of holes with aspect ratios 40:1. A Ru film was deposited at 155 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm) from complex 1. Magnified images of (b) top, (c) middle and (d) bottom of the hole.
Fig. S16 (a) A SEM image of holes with aspect ratios 40:1. A Ru film was deposited at 165 °C under a flow of N₂ (10 sccm) and H₂ (1 sccm) from complex 3. Magnified images of (b) top, (c) middle and (d) bottom of the hole.