Supporting Information

Pentanuclear Complexes with Unusual Structural Topologies from the Initial Use of two Aliphatic Amino-Alcohol Ligands in Fe Chemistry

Christos M. Kizas,a Manolis J. Manos,a Vassilios Nastopoulos,b Athanassios K. Boudalis,c Yiannis Sanakis*,c Anastasios J. Tasiopoulos*,a

a Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus. Fax: ++357 22892801; Tel: ++357 22892765; E-mail: atasio@ucy.ac.cy
b Department of Chemistry, University of Patras, 26500 Patras, Greece
c Institute of Materials Science, NCRS “Demokritos”, 15310 Aghia Paraskevi, Athens, Greece
Fig. S1. A partially labelled representation of the molecular structure of 2. Colour code: Fe, green; O, red; N, blue; C, grey. H atoms are omitted for clarity.
Table S1. Selected interatomic distances (Å) for complex 2

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe1····Fe2</td>
<td>2.970(1)</td>
<td>Fe3 - O4</td>
<td>2.015(2)</td>
</tr>
<tr>
<td>Fe1····Fe4</td>
<td>3.269(1)</td>
<td>Fe3 - O6</td>
<td>2.051(2)</td>
</tr>
<tr>
<td>Fe2····Fe3</td>
<td>3.265(1)</td>
<td>Fe3 - O7</td>
<td>2.022(2)</td>
</tr>
<tr>
<td>Fe2····Fe4</td>
<td>3.462(1)</td>
<td>Fe3 - O16</td>
<td>1.988(2)</td>
</tr>
<tr>
<td>Fe2····Fe5</td>
<td>3.516(1)</td>
<td>Fe3 - O20</td>
<td>1.904(2)</td>
</tr>
<tr>
<td>Fe3····Fe5</td>
<td>2.996(1)</td>
<td>Fe3 – N2</td>
<td>2.159(3)</td>
</tr>
<tr>
<td>Fe4····Fe5</td>
<td>3.045(1)</td>
<td>Fe4 – O9</td>
<td>2.041(2)</td>
</tr>
<tr>
<td>Fe1 – O1</td>
<td>2.066(2)</td>
<td>Fe4 – O12</td>
<td>2.030(2)</td>
</tr>
<tr>
<td>Fe1 - O10</td>
<td>2.066(2)</td>
<td>Fe4 – O17</td>
<td>1.975(2)</td>
</tr>
<tr>
<td>Fe1 - O11</td>
<td>2.061(2)</td>
<td>Fe4 – O18</td>
<td>2.020(2)</td>
</tr>
<tr>
<td>Fe1 - O15</td>
<td>1.946(2)</td>
<td>Fe4 – O19</td>
<td>1.851(2)</td>
</tr>
<tr>
<td>Fe1 - O19</td>
<td>1.878(2)</td>
<td>Fe4 – N3</td>
<td>2.181(3)</td>
</tr>
<tr>
<td>Fe1 - N1</td>
<td>2.124(2)</td>
<td>Fe5 – O13</td>
<td>2.046(2)</td>
</tr>
<tr>
<td>Fe2 - O2</td>
<td>2.061(2)</td>
<td>Fe5 – O13</td>
<td>1.987(2)</td>
</tr>
<tr>
<td>Fe2 - O3</td>
<td>2.065(2)</td>
<td>Fe5 – O17</td>
<td>1.985(2)</td>
</tr>
<tr>
<td>Fe2 - O5</td>
<td>2.038(2)</td>
<td>Fe5 – O18</td>
<td>2.017(2)</td>
</tr>
<tr>
<td>Fe2 - O15</td>
<td>2.117(2)</td>
<td>Fe5 – O20</td>
<td>2.011(2)</td>
</tr>
<tr>
<td>Fe2 - O19</td>
<td>1.938(2)</td>
<td>Fe5 – N4</td>
<td>2.132(2)</td>
</tr>
<tr>
<td>Fe2 - O20</td>
<td>1.889(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. S2. A partially labelled representation of the molecular structure of 3. Colour code: Fe, green; O, red; N, blue; C, grey. H atoms are omitted for clarity.
Table S2. Selected interatomic distances (Å) for complex 3·1.3MeCN·H₂O

<table>
<thead>
<tr>
<th></th>
<th>Distance (Å)</th>
<th></th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe1···Fe2</td>
<td>2.970(9)</td>
<td>Fe3 - N2</td>
<td>2.168(4)</td>
</tr>
<tr>
<td>Fe1···Fe4</td>
<td>3.248(2)</td>
<td>Fe3 - O4</td>
<td>2.015(3)</td>
</tr>
<tr>
<td>Fe2···Fe3</td>
<td>3.214(9)</td>
<td>Fe3 - O6</td>
<td>2.045(3)</td>
</tr>
<tr>
<td>Fe2···Fe4</td>
<td>3.524(2)</td>
<td>Fe3 - O7</td>
<td>1.994(4)</td>
</tr>
<tr>
<td>Fe2···Fe5</td>
<td>3.563(2)</td>
<td>Fe3 - O16</td>
<td>1.993(3)</td>
</tr>
<tr>
<td>Fe3···Fe5</td>
<td>3.011(2)</td>
<td>Fe3 - O20</td>
<td>1.895(3)</td>
</tr>
<tr>
<td>Fe4···Fe5</td>
<td>3.041(8)</td>
<td>Fe4 - N3</td>
<td>2.157(4)</td>
</tr>
<tr>
<td>Fe1 - N1</td>
<td>2.105(4)</td>
<td>Fe4 - O9</td>
<td>2.023(3)</td>
</tr>
<tr>
<td>Fe1 - O1</td>
<td>2.077(3)</td>
<td>Fe4 - O12</td>
<td>2.075(3)</td>
</tr>
<tr>
<td>Fe1 - O10</td>
<td>2.039(3)</td>
<td>Fe4 - O17</td>
<td>2.039(3)</td>
</tr>
<tr>
<td>Fe1 - O11</td>
<td>2.032(3)</td>
<td>Fe4 - O18</td>
<td>1.995(3)</td>
</tr>
<tr>
<td>Fe1 - O19</td>
<td>1.871(3)</td>
<td>Fe4 - O19</td>
<td>1.848(3)</td>
</tr>
<tr>
<td>Fe1 - O15</td>
<td>1.981(3)</td>
<td>Fe5 - N4</td>
<td>2.161(4)</td>
</tr>
<tr>
<td>Fe2 - O2</td>
<td>2.095(3)</td>
<td>Fe5 - O13</td>
<td>2.006(3)</td>
</tr>
<tr>
<td>Fe2 - O3</td>
<td>2.066(3)</td>
<td>Fe5 - O16</td>
<td>1.963(3)</td>
</tr>
<tr>
<td>Fe2 - O5</td>
<td>2.059(3)</td>
<td>Fe5 - O17</td>
<td>2.012(3)</td>
</tr>
<tr>
<td>Fe2 - O15</td>
<td>2.064(3)</td>
<td>Fe5 - O18</td>
<td>1.997(3)</td>
</tr>
<tr>
<td>Fe2 - O19</td>
<td>1.952(3)</td>
<td>Fe5 - O20</td>
<td>2.011(3)</td>
</tr>
<tr>
<td>Fe2 - O20</td>
<td>1.875(3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. S3. A partially labelled representation of the molecular structure of 4. Colour code: Fe, green; O, red; N, blue; C, grey. H atoms are omitted for clarity.
Table S3. Selected interatomic distances (Å) for complex $4\cdot0.3\text{H}_2\text{O}$

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value</th>
<th>Distance</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe1···Fe2</td>
<td>2.954(2)</td>
<td>Fe3 - N2</td>
<td>2.167(5)</td>
</tr>
<tr>
<td>Fe1···Fe5</td>
<td>3.230(2)</td>
<td>Fe3 - O10</td>
<td>2.066(4)</td>
</tr>
<tr>
<td>Fe2···Fe3</td>
<td>3.199(2)</td>
<td>Fe3 - O11</td>
<td>1.988(4)</td>
</tr>
<tr>
<td>Fe2···Fe4</td>
<td>3.576(2)</td>
<td>Fe3 - O2</td>
<td>1.983(4)</td>
</tr>
<tr>
<td>Fe2···Fe5</td>
<td>3.540(2)</td>
<td>Fe3 - O20</td>
<td>1.899(4)</td>
</tr>
<tr>
<td>Fe3···Fe4</td>
<td>3.038(2)</td>
<td>Fe3 - O8</td>
<td>2.028(5)</td>
</tr>
<tr>
<td>Fe4···Fe5</td>
<td>3.070(2)</td>
<td>Fe4 - N3</td>
<td>2.177(5)</td>
</tr>
<tr>
<td>Fe1 - N1</td>
<td>2.174(5)</td>
<td>Fe4 - O13</td>
<td>2.007(4)</td>
</tr>
<tr>
<td>Fe1 - O1</td>
<td>1.955(4)</td>
<td>Fe4 - O2</td>
<td>1.959(4)</td>
</tr>
<tr>
<td>Fe1 - O16</td>
<td>2.028(4)</td>
<td>Fe4 - O20</td>
<td>2.048(4)</td>
</tr>
<tr>
<td>Fe1 - O18</td>
<td>2.025(5)</td>
<td>Fe4 - O3</td>
<td>1.997(4)</td>
</tr>
<tr>
<td>Fe1 - O19</td>
<td>1.864(4)</td>
<td>Fe4 - O4</td>
<td>2.031(4)</td>
</tr>
<tr>
<td>Fe1 - O5</td>
<td>2.072(4)</td>
<td>Fe5 - N4</td>
<td>2.163(5)</td>
</tr>
<tr>
<td>Fe2 - O1</td>
<td>2.070(4)</td>
<td>Fe5 - O15</td>
<td>2.043(4)</td>
</tr>
<tr>
<td>Fe2 - O19</td>
<td>1.959(4)</td>
<td>Fe5 - O17</td>
<td>2.082(4)</td>
</tr>
<tr>
<td>Fe2 - O20</td>
<td>1.861(4)</td>
<td>Fe5 - O19</td>
<td>1.844(4)</td>
</tr>
<tr>
<td>Fe2 - O6</td>
<td>2.066(4)</td>
<td>Fe5 - O3</td>
<td>1.985(4)</td>
</tr>
<tr>
<td>Fe2 - O7</td>
<td>2.049(4)</td>
<td>Fe5 - O4</td>
<td>2.044(4)</td>
</tr>
<tr>
<td>Fe2 - O9</td>
<td>2.018(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>