The Open-Chain Triphosphanes RMe₂SiCH₂P(PR’₂)₂ (R = Me, Ph; R’= SiMe₃, Cy, Ph).

C. E. Averre, M. P. Coles, I. R. Crossley*, I. J. Day

Department of Chemistry, University of Sussex, Falmer, Brighton, UK

Supplementary Information

The resolution of experimental spectra for the cyclohexyl systems is compromised by broadening observed for some of the transitions, specifically the middle resonances of the A spin component, however, the application of mild resolution enhancement facilitates measurement of the appropriate datum in each case.

Compound 4 simulation (top) and spectrum (bottom) for A spin.
Compound 4 simulation (top) and spectrum (bottom) for M spins.
Compound 6 simulation (top) and spectrum (bottom) for A spin.
Compound 6 simulation (top) and spectrum (bottom) for M spins.
Compound 7 simulation (top) and spectrum (bottom) for A spin.
Compound 7 simulation (top) and spectrum (bottom) for M spins.
Compound 8 simulation (top) and spectrum (bottom) for A spins.
Compound 8 simulation (top) and spectrum (bottom) for M spins.
Compound 9 simulation (top) and spectrum (bottom) for A spin.
Compound 9 simulation (top) and spectrum (bottom) for M spins.
Compound 10. 31P{1H} NMR spectrum (bottom) and simulated for AA’BB’ spin system (top) showing all transitions (line broadening = 0.5 Hz). Scale in PPM

Compound 10. 31P{1H} NMR spectrum (bottom) and simulated for AA’BB’ spin system (top) using universal line broadening of 3 Hz. Scale in PPM