Supporting Information

Unsymmetrical Ru-NHC Catalysts: A Key for the Selective Tandem Ring Opening - Ring Closing Alkene Metathesis (RO-RCM) of Cyclooctene.

Santosh Kavitake,^a Manoja K. Samantaray, ^a Richard Dehn,^b Michael Limbach,^{b,c} Jörg A. Schachner,^c Erwan Jeanneau,^d Christophe Copéret,^{*,a,e} Chloé Thieuleux^{*,a}.

^a Université de Lyon, C2P2, UMR 5265 (CNRS -CPE Lyon – Université Lyon 1), 43 Bd. du 11 Novembre 1918, 69616 Villeurbanne Cedex France, ^b BASF SE, Basic Chemicals Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany, ^c CaRLa – Catalysis Research Laboratory, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany, ^d Centre de Diffractométrie Henri Longchambon - Université Lyon 1, 43, Bd du 11 Novembre 1918 F-69616 Villeurbanne, France, ^eETH Zürich, Department of Chemistry, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland

email: ccoperet@inorg.chem.ethz.ch; thieuleux@cpe.fr

General Information. All experiments for introduction of metal complex and catalytic performances were carried out under Ar using standard Schlenk techniques, using freshly distilled and degassed solvents. Toluene was freshly distilled over NaK under Ar in presence of benzophenone ketyl. [K(N(SiMe_3)_2] (0.5M in toluene and Grubbs I catalyst ($Cl_2(PCy_3)_2Ru(=CHPh)$) were bought from Sigma-Aldrich.

Nuclear Magnetic Resonance Spectroscopy. Liquid state NMR spectra were recorded using a Bruker AC 300.

Gas Chromatography: Gas phase analyses (metathesis of cyclooctene) were performed on a Hewlett Packard 7890 A series II GC apparatus equipped with a FID detector and a HP5 column (30m X 0.25 mm).

Experimental procedures:

Synthesis of unsymmetrical homogeneous complexes:

Synthesis of RuPr. To a solution of 1-mesityl-3-propylimidazolium iodide (0.5 g, 1.4 mmol) in 5 mL of toluene was added 2.8 mL (1.4 mmol) of a 0.5 M toluene solution of $[K(N(SiMe_3)_2]$. A white precipitate was formed, after stirring for 20 min, then a solution of $Cl_2(PCy_3)_2Ru(=CHPh)$ (0.98 g, 1.2 mmol) in 10 mL of toluene was added. The reaction mixture, was stirred for 3 h and then filtered over Celite. The solvent was removed under vacuum and the residual solid product was crystallized in toluene and pentane to give 0.64 g of **RuPr**. ¹H NMR (CD₂Cl₂, 300 MHz): δ (ppm)= 19.26 (s, 1H), 7.9 (br, 1H), 7.45 (t, 1H, *J* = 7.5 Hz), 7.3 (d, 1H, *J* = 1.8 Hz), 7.16 (m, 2H), 6.88 (d, 1H, *J* = 1.8Hz), 6.3 (br, 2H), 4.7 (t, 2H, *J* = 7.5 Hz), 2.4-2.2 (m, 6H), 1.96 (s, 6H), 1.94 (s, 3H), 1.66 (m, 16H), 1.17-1.39 (m, 18H), ³¹P NMR (CD₂Cl₂, 300MHz): δ (ppm)= 33.7 (s, 1P). ¹³C NMR (CD₂Cl₂, 75 MHz): 187.5 (C_{NHC}=Ru, *J*_{P-C} = 82 Hz), 152.2 C_{ar}, 139.3 C_{ar}, 137.2 C_{ar}, 136.9 C_{ar}, 131 C_{ar}, 129.4 C_{ar}, 129.0 C_{ar}, 128.8 C_{ar}, 124.4 C_{NHC}, 121.8 C_{NHC}, 53.1 (CH₂-N), 32.5 (d, *J*_{P-C} = 16.5 Hz, ipso-C_{Cy}), 30.4 (*meta*-C_{Cy}), 28.7 (d, *J*_{P-C} = 9.75 Hz ortho-C_{Cy}), 27.5 (*para*-C_{Cy}), 24.8 (-CH₂), 21.6 (Ar-CH₃), 18.9 (Ar-CH₃) , 12.2 (-CH₃) . HRMS (ESI+): m/z 735.3150 [M]⁺ *i.e* calculated 735.3150

Synthesis of RuBn. To 1-mesithyl-3-benzylimidazolium chloride (0.3 g, 0.96 mmol) in 5 mL of toluene was added 1.92 mL (0.96mmol) of a 0.5 M toluene solution of $[K(N(SiMe_3)_2]]$. After stirring for 20 min, a solution of $Cl_2(PCy_3)_2Ru(=CHPh)$ (0.67 g, 0.82 mmol) in 10 mL of toluene was added. The reaction mixture was stirred for 3 h and filtered over celite. The solvent was removed under vacuum, and the residual solid product was crystallized in toluene and pentane giving 0.46 g of **RuBn**.

¹H NMR (CD₂Cl₂, 300 MHz): δ (ppm)= 19.21 (s, 1H), 7.96 (br, 1H), 7.72 (dd, 1H, *J* = 1.8 Hz), 7.47 (t, 2H, *J* = 7.5 Hz), 7.16 (t, 2H, *J* = 7.5 Hz), 6.98 (d, 1H, *J* =1.8Hz), 6.86 (d, 1H, *J* =1.8Hz), 6.37 (br, 2H), 5.9 (s, 2H), 2.4-2.2 (m, 4H), 2.0 (s, 3H), 1.98 (s, 6H), 1.62 (m, 16H), 1.11-1.36 (m, 14H), ³¹P NMR (CD₂Cl₂, 300MHz): δ (ppm)= 36.9 (s, 1P). ¹³C NMR (CD₂Cl₂, 75 MHz): 187.5 (C_{NHC}=Ru, $J_{P-C} = 82$ Hz), 152.2 C_{ar}, 138.8 C_{ar}, 136.5 C_{ar}, 136.3 C_{ar}, 135.8 C_{ar}, 130.6 C_{ar}, 129.7 C_{ar}, 129.2 C_{ar}, 129.0 C_{ar}, 128.9 C_{ar}, 128.5 C_{ar}, 128.3 C_{ar}, 124.4 C_{NHC}, 121.9 C_{NHC}, 55.3 (CH₂-N), 31.7 (d, $J_{P-C} = 16.5$ Hz, *ipso*-C_{Cy}), 29.9 (*meta*-C_{Cy}), 28.07 (d, $J_{P-C} = 9.8$ Hz ortho-C_{Cy}), 26.9 (*para*-C_{Cy}), 21.07 (Ar-CH₃), 18.3 (Ar-CH₃). HRMS (ESI+): m/z 783.3149 [M-Cl]⁺ *i.e* calculated 783.3151

Catalytic tests:

All metathesis experiments were carried out under an inert atmosphere, in a glove-box. Toluene was dried over NaK and distilled under nitrogen prior to use. Cyclooctene (*cis*-cyclooctene) was purchased from Aldrich, distilled over Na prior to use. Catalysts Grubbs second generation catalyst was purchased from Aldrich and catalyst (Nolan) was synthesized according to the literature procedures.

GC response factors using internal standard:

GC response factors were determined for cyclooctene (C8) & dimer (C16) with respect to eicosane (E) as an internal standard. Standard solutions were prepared with different concentrations of cyclooctene & dimer keeping the eicosane concentration constant at 8.14 mM. The molar ratio of each solution was plotted against the ratio of area percentage data. The corrosponding factor was determined by fitting the data to a linear trendline.

Gas phase analyses (metathesis) were performed on a Agilent Technologies 7890A GC apparatus equipped with a FID detector and a HP5 Fame column (30m X 0.32mm) and an automated sampler.

Split ratio of GC was set to 50:1., Sample injection 1 microliter with 10 microliter syringe.

Figure S 1: a) Response ratio of C8 /E **b)** Response ratio of C16/ E. [C8] = Concentration of C8 in mM, [C16] = Concentration of C16 in mM, [E] = Concentration of eicosane in mM, (AC8) = Area of C8, (AC16) = Area of C16. (AE) = Area of eicosane

Cyclooctene metathesis experiments with homogeneous Ru-complexes

(Ratio Cyclooctene/ Ru of c.a. 10,000).

Representative procedure: (G-II, N-II, RuPr, RuBn): Eicosane was dissolved in ~20mM toluene solution of cyclooctene. Sample was taken for GC analysis as a reference. Homogeneous Ru-catalyst was dissolved in toluene so as to obtain the initial stock solution. An aliquot of this stock solution was added to the above solution of cyclooctene, at room temperature. The progress of the metathesis reaction was monitored by sampling at suitable intervals. (The samples were immediately quenched by an excess of ethyl acetate). The samples were analysed by GC with a HP5 column.

Selectivity and mass balance are defined as follows:

Selectivity in product i (S_i) .= (number of mole of cyclooctene converted in product i) / (total number of cyclooctene converted).

Mass balance = (sum of number of mole of cyclooctene converted in all the products) / (total number of cyclooctene converted).

Plots for the catalytic performances of homogeneous catalysts in RO-RCM of cyclooctene

b)

d)

e)

Figure S2: a) Conversion vs. Time for all the catalysts; b) Mass balance vs. Conversion for all the catalysts; c) Selectivity of dimer vs. Conversion for all the catalysts; d) Selectivity of cyclic oligomers vs. conversion, at constant mass balance for **RuPr**; e) Selectivity of cyclic oligomers vs. conversion, at constant mass balance for **RuPr**.

Characterisation of Homogeneous complexes RuPr and RuBn

1) RuPr

a) High resolution mass spectrum (ESI+) of RuPr

b) Experimental molecule ion spectrum

c) Simulated spectrum.

Figure S 3: a) High resolution mass spectrum (ESI+) of **RuPr.** b) Experimental molecule ion spectrum. c) Simulated spectrum.

2) RuBn

a) High resolution mass spectrum (ESI+) of RuBn

b) Experimental molecule ion spectrum

c) Simulated spectrum.

Figure S 4: a) High resolution mass spectrum (ESI+) of RuBn. b) Experimental molecule ion spectrum. c) Simulated spectrum.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry 2011

3) X-ray structure of RuBn

Crystal data

C ₄₄ H ₅₉ Cl ₂ N ₂ PRu	Z = 2
$M_r = 818.91$	F(000) = 860
Triclinic, P^-1	$D_{\rm x} = 1.348 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.7107$ Å
a = 9.5221 (6) Å	Cell parameters from 23423 reflections
b = 13.8865 (7) Å	$\theta = 3.3 - 29.6^{\circ}$
c = 17.1831 (9) Å	$\mu = 0.59 \text{ mm}^{-1}$
$\alpha = 96.169 \ (4)^{\circ}$	<i>T</i> = 110 K
$\beta = 104.967 \ (5)^{\circ}$	Block, dark brown
$\gamma = 109.769 \ (5)^{\circ}$	$0.25\times0.18\times0.09~mm$
V = 2017.7 (2) Å ³	

Data collection

Xcalibur, Atlas, Gemini ultra diffractometer	10138 independent reflections
Radiation source: Enhance (Mo) X-ray Source	8696 reflections with $I > 2.0\sigma(I)$
graphite	$R_{\rm int} = 0.082$
Detector resolution: 10.4685 pixels mm ⁻¹	$\theta_{max}=29.7^\circ,\theta_{min}=3.4^\circ$
Absorption correction: analytical <i>CrysAlis PRO</i> , Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)	<i>h</i> = -13→13
$T_{\min} = 0.903, T_{\max} = 0.954$	$k = -19 \rightarrow 18$
39857 measured reflections	<i>l</i> = -23→23

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods	
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites	
$R[F^2 > 2\sigma(F^2)] = 0.068$	Method, part 1, Chebychev polynomial, (Watkin, 1994, <i>Prince</i> , 1982) [<i>weight</i>] = $1.0/[A_0*T_0(x) + A_1*T_1(x) \dots + A_{n-1}]*T_{n-1}(x)]$ where A _i are the Chebychev coefficients listed below and x = <i>F</i> / <i>F</i> max Method = Robust Weighting (<i>Prince</i> , 1982) W = [<i>weight</i>] * [1 (delta <i>F</i> /6*sigma <i>F</i>) ²] ² A _i are: 0.102E + 04 0.159E + 04 828. 218.	
$wR(F^2) = 0.168$	$(\Delta/\sigma)_{max} = 0.001$	
S = 0.98	$\Delta \rangle_{\rm max} = 1.75 \ {\rm e} \ {\rm \AA}^{-3}$	
10138 reflections	$\Delta \rangle_{\rm min} = -1.98 \ {\rm e} \ {\rm \AA}^{-3}$	
452 parameters	Extinction correction: Larson (1970), Equation 22	
0 restraints	Extinction coefficient: 52 (9)	

Geometric parameters (Å, °)

Ru1—Cl2	2.3968 (10)	С22—Н221	0.973
Ru1—Cl3	2.3959 (10)	C23—C24	1.471 (5)
Ru1—P4	2.4202 (11)	С23—Н231	0.933
Ru1—C23	1.830 (4)	C24—C25	1.401 (6)
Ru1—C30	2.067 (3)	C24—C29	1.411 (6)
P4—C5	1.858 (4)	C25—C26	1.378 (6)
P4—C11	1.861 (4)	С25—Н251	0.933
P4—C17	1.858 (4)	C26—C27	1.397 (7)
C5—C6	1.540 (6)	C26—H261	0.936
C5-C10	1.542 (6)	C27—C28	1.389 (7)
С5—Н51	0.980	С27—Н271	0.933
C6—C7	1.530 (6)	C28—C29	1.378 (6)
С6—Н61	0.972	C28—H281	0.932
С6—Н62	0.965	С29—Н291	0.934
С7—С8	1.526 (7)	C30—N31	1.357 (5)
С7—Н71	0.973	C30—N41	1.359 (5)
С7—Н72	0.970	N31—C32	1.471 (6)
C8—C9	1.530 (7)	N31—C39	1.381 (5)
С8—Н82	0.975	C32—C33	1.508 (6)
C8—H81	0.973	С32—Н322	0.972
C9-C10	1.533 (6)	С32—Н321	0.977
С9—Н91	0.968	C33—C34	1.386 (6)
С9—Н92	0.964	C33—C38	1.392 (6)

	•		•
C10—H102	0.976	C34—C35	1.388 (7)
C10—H101	0.972	C34—H341	0.928
C11—C12	1.527 (6)	C35—C36	1.388 (8)
C11—C16	1.537 (6)	С35—Н351	0.935
C11—H111	0.986	C36—C37	1.377 (8)
C12—C13	1.523 (6)	С36—Н361	0.930
C12—H122	0.978	C37—C38	1.390 (7)
C12—H121	0.974	С37—Н371	0.928
C13—C14	1.531 (7)	С38—Н381	0.929
C13—H131	0.965	C39—C40	1.335 (7)
С13—Н132	0.968	С39—Н391	0.927
C14—C15	1.516(7)	C40—N41	1.402 (5)
C14—H142	0.973	С40—Н401	0.934
C14—H141	0.972	N41—C42	1.451 (5)
C15—C16	1.525 (6)	C42—C43	1.401 (6)
C15—H151	0.969	C42—C47	1.381 (6)
С15—Н152	0.963	C43—C44	1.386 (6)
C16—H161	0.968	C43—C50	1.482 (6)
C16—H162	0.978	C44—C45	1.388 (7)
C17—C18	1.537 (6)	C44—H441	0.933
C17—C22	1.536 (6)	C45—C46	1.398 (8)
C17—H171	0.978	C45—C49	1.503 (7)
C18—C19	1.526 (6)	C46—C47	1.401 (7)
C18—H182	0.980	C46—H461	0.934
C18—H181	0.972	C47—C48	1.505 (7)
C19—C20	1.525 (6)	C48—H481	0.961
С19—Н191	0.972	C48—H482	0.967
С19—Н192	0.973	С48—Н483	0.960
C20—C21	1.526 (7)	С49—Н492	0.958
C20—H201	0.973	С49—Н491	0.956
С20—Н202	0.970	С49—Н493	0.958
C21—C22	1.532 (6)	С50—Н502	0.961
C21—H211	0.974	С50—Н501	0.965
C21—H212	0.972	С50—Н503	0.958
С22—Н222	0.972		
Cl2—Ru1—Cl3	165.56 (4)	С21—С20—Н202	108.8
Cl2—Ru1—P4	91.92 (4)	H201—C20—H202	109.0
C13—Ru1—P4	89.70 (4)	C20—C21—C22	112.3 (4)
Cl2—Ru1—C23	104.50 (13)	C20—C21—H211	108.5
Cl3—Ru1—C23	89.39 (13)	C22—C21—H211	108.1
P4—Ru1—C23	99.06 (13)	C20—C21—H212	109.5

Cl2—Ru1—C30	82.97 (11)	C22—C21—H212	109.2
Cl3—Ru1—C30	91.20 (11)	H211—C21—H212	109.2
P4—Ru1—C30	162.38 (12)	C17—C22—C21	109.9 (4)
C23—Ru1—C30	98.55 (17)	С17—С22—Н222	109.5
Ru1—P4—C5	115.12 (14)	C21—C22—H222	108.9
Ru1—P4—C11	108.41 (14)	C17—C22—H221	110.1
C5—P4—C11	103.47 (19)	C21—C22—H221	109.6
Ru1—P4—C17	114.65 (14)	H222—C22—H221	108.8
C5—P4—C17	110.44 (19)	Ru1—C23—C24	135.4 (3)
C11—P4—C17	103.43 (19)	Ru1—C23—H231	112.7
P4—C5—C6	111.9 (3)	C24—C23—H231	111.9
P4C5C10	119.1 (3)	C23—C24—C25	125.9 (4)
C6C5C10	109.1 (3)	C23—C24—C29	116.8 (4)
P4—C5—H51	105.1	C25—C24—C29	117.3 (4)
C6-C5-H51	105.5	C24—C25—C26	121.2 (5)
C10-C5-H51	105.0	C24—C25—H251	118.7
C5—C6—C7	109.8 (3)	C26—C25—H251	120.0
С5—С6—Н61	108.5	C25—C26—C27	120.6 (5)
С7—С6—Н61	109.3	C25—C26—H261	119.2
С5—С6—Н62	109.4	C27—C26—H261	120.2
С7—С6—Н62	110.5	C26—C27—C28	119.2 (4)
H61—C6—H62	109.2	С26—С27—Н271	120.6
C6—C7—C8	111.3 (4)	C28—C27—H271	120.2
С6—С7—Н71	109.5	C27—C28—C29	120.2 (5)
С8—С7—Н71	109.1	C27—C28—H281	119.5
С6—С7—Н72	108.8	C29—C28—H281	120.3
С8—С7—Н72	109.2	C24—C29—C28	121.5 (4)
H71—C7—H72	108.9	C24—C29—H291	119.2
С7—С8—С9	111.2 (4)	С28—С29—Н291	119.3
С7—С8—Н82	109.1	Ru1—C30—N31	123.2 (3)
С9—С8—Н82	109.1	Ru1—C30—N41	132.0 (3)
С7—С8—Н81	108.5	N31—C30—N41	104.1 (3)
С9—С8—Н81	109.4	C30—N31—C32	125.2 (4)
H82—C8—H81	109.5	C30—N31—C39	111.6 (4)
C8—C9—C10	112.6 (4)	C32—N31—C39	123.2 (4)
С8—С9—Н91	108.5	N31—C32—C33	112.6 (4)
С10—С9—Н91	108.8	N31—C32—H322	107.3
С8—С9—Н92	108.9	С33—С32—Н322	108.8
С10—С9—Н92	109.0	N31—C32—H321	109.7
Н91—С9—Н92	109.0	С33—С32—Н321	109.4
C5—C10—C9	109.9 (4)	H322—C32—H321	108.9
C5-C10-H102	109.1	C32—C33—C34	121.2 (4)

C9-C10-H102	109.0	C32—C33—C38	120.0 (4)
C5-C10-H101	110.2	C34—C33—C38	118.8 (4)
C9-C10-H101	109.9	C33—C34—C35	120.4 (5)
H102—C10—H101	108.8	С33—С34—Н341	119.6
P4—C11—C12	110.5 (3)	С35—С34—Н341	120.0
P4—C11—C16	112.6 (3)	C34—C35—C36	120.2 (5)
C12-C11-C16	110.9 (4)	С34—С35—Н351	119.5
P4—C11—H111	107.3	С36—С35—Н351	120.3
C12—C11—H111	108.0	C35—C36—C37	120.0 (5)
C16—C11—H111	107.4	С35—С36—Н361	120.4
C11—C12—C13	112.2 (4)	С37—С36—Н361	119.6
C11—C12—H122	108.8	C36—C37—C38	119.7 (5)
C13—C12—H122	108.9	С36—С37—Н371	120.1
C11—C12—H121	108.0	С38—С37—Н371	120.2
C13-C12-H121	109.6	C33—C38—C37	120.9 (4)
H122—C12—H121	109.3	С33—С38—Н381	119.6
C12—C13—C14	110.2 (4)	С37—С38—Н381	119.5
C12—C13—H131	110.1	N31—C39—C40	107.0 (4)
C14—C13—H131	108.8	N31—C39—H391	125.9
C12—C13—H132	109.6	С40—С39—Н391	127.1
C14—C13—H132	108.7	C39—C40—N41	106.6 (4)
H131—C13—H132	109.5	С39—С40—Н401	127.6
C13—C14—C15	109.8 (4)	N41—C40—H401	125.8
C13—C14—H142	110.5	C40—N41—C30	110.7 (4)
C15—C14—H142	109.7	C40—N41—C42	122.4 (4)
C13—C14—H141	109.6	C30—N41—C42	126.6 (3)
C15—C14—H141	109.2	N41—C42—C43	117.2 (4)
H142—C14—H141	108.1	N41—C42—C47	119.2 (4)
C14—C15—C16	111.7 (4)	C43—C42—C47	123.5 (4)
C14—C15—H151	108.5	C42—C43—C44	117.0 (4)
C16—C15—H151	109.4	C42—C43—C50	121.6 (4)
C14—C15—H152	108.9	C44—C43—C50	121.4 (4)
C16—C15—H152	109.2	C43—C44—C45	122.4 (5)
H151—C15—H152	109.1	C43—C44—H441	118.3
C11—C16—C15	111.2 (4)	C45—C44—H441	119.4
C11—C16—H161	109.1	C44—C45—C46	118.2 (5)
C15—C16—H161	109.0	C44—C45—C49	120.7 (5)
C11—C16—H162	109.1	C46—C45—C49	121.1 (5)
C15—C16—H162	109.2	C45—C46—C47	121.9 (5)
H161—C16—H162	109.3	C45—C46—H461	118.9
P4—C17—C18	114.1 (3)	C47—C46—H461	119.2
P4—C17—C22	115.5 (3)	C46—C47—C42	117.0 (4)

C18—C17—C22	111.3 (4)	C46—C47—C48	121.8 (4)
P4—C17—H171	103.7	C42—C47—C48	121.3 (4)
C18—C17—H171	104.4	C47—C48—H481	109.4
С22—С17—Н171	106.6	С47—С48—Н482	110.4
C17—C18—C19	110.7 (4)	H481—C48—H482	108.8
C17—C18—H182	108.6	С47—С48—Н483	110.1
C19—C18—H182	109.0	H481—C48—H483	108.7
C17—C18—H181	108.6	H482—C48—H483	109.3
C19—C18—H181	110.0	С45—С49—Н492	110.1
H182—C18—H181	109.9	С45—С49—Н491	111.3
C18—C19—C20	111.5 (4)	H492—C49—H491	108.3
C18—C19—H191	108.7	С45—С49—Н493	110.5
C20-C19-H191	109.9	H492—C49—H493	108.1
C18—C19—H192	108.4	H491—C49—H493	108.5
С20—С19—Н192	109.2	С43—С50—Н502	110.7
H191—C19—H192	109.0	C43—C50—H501	110.1
C19—C20—C21	111.1 (4)	H502—C50—H501	108.8
C19—C20—H201	109.4	С43—С50—Н503	110.2
C21—C20—H201	109.9	H502—C50—H503	108.7
С19—С20—Н202	108.6	H501—C50—H503	108.3