Electronic Supplementary Information (ESI)

Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms

Riccardo Ferdani, Dannon J. Stigers, Ashley L. Fiamengo, Lihui Wei, Barbara T. Y. Li, James A. Golen, Arnold L. Rheingold, Gary R. Weisman, Edward H. Wong and Carolyn J. Anderson

a Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
b Department of Chemistry, University of New Hampshire, Durham, New Hampshire, 03824, USA
c Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, North Dartmouth, Massachusetts, 02747, USA
d Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
e E-mail: gary.weisman@unh.edu
f E-mail: ehw@unh.edu
g Department of Biochemistry; Department of Chemistry, Washington University, St. Louis, Missouri, 63110, USA
h Current address: Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219, USA; E-mail: andersoncj@upmc.edu
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Details of HPLC Purification of CB-TE1A1P (2)</td>
<td>3</td>
</tr>
<tr>
<td>2. List of X-ray Crystallographic Software Employed</td>
<td>4</td>
</tr>
<tr>
<td>3. Detailed Energetic Results for DFT Calculations</td>
<td>5</td>
</tr>
<tr>
<td>4. UV/VIS Spectrum of Cu-CB-TE1A1P</td>
<td>7</td>
</tr>
<tr>
<td>5. NMR Spectra</td>
<td>7</td>
</tr>
<tr>
<td>NMR Spectra of TFA Salt (2•2.5TFA•H₂O) of CB-TE1A1P (D₂O)</td>
<td>8</td>
</tr>
<tr>
<td>¹H NMR (500 MHz) & expansions</td>
<td>8</td>
</tr>
<tr>
<td>COSY & expansions</td>
<td>32</td>
</tr>
<tr>
<td>¹³C{¹H} NMR (125.7 MHz) & expansions</td>
<td>38</td>
</tr>
<tr>
<td>¹³C{¹H} NMR (100.5 MHz) & expansions</td>
<td>44</td>
</tr>
<tr>
<td>Comparison of 125.7 & 100.5 MHz ¹³C{¹H} spectra</td>
<td>45</td>
</tr>
<tr>
<td>HMQC & expansions</td>
<td>51</td>
</tr>
<tr>
<td>³¹P{¹H} NMR</td>
<td>56</td>
</tr>
<tr>
<td>NMR Spectra of 6 (C₆D₆)</td>
<td>57</td>
</tr>
<tr>
<td>¹H NMR (500 MHz) & expansions</td>
<td>57</td>
</tr>
<tr>
<td>COSY & expansions</td>
<td>72</td>
</tr>
<tr>
<td>¹³C{¹H} NMR (125.7 MHz) & expansions</td>
<td>79</td>
</tr>
<tr>
<td>¹³C{¹H} NMR (100.5 MHz) & expansions</td>
<td>88</td>
</tr>
<tr>
<td>Comparison of 125.7 & 100.5 MHz ¹³C{¹H} spectra</td>
<td>89</td>
</tr>
<tr>
<td>HMQC & expansions</td>
<td>98</td>
</tr>
<tr>
<td>³¹P{¹H} NMR</td>
<td>107</td>
</tr>
</tbody>
</table>
1. **Details of HPLC Purification of CB-TE1A1P (2)**

A batch of CB-TE1A1P that contained some impurities was purified by HPLC using a C\textsubscript{18} semipreparative column with a 3 mL/min flow rate and the following gradient:

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>% 0.1% TFA in water</th>
<th>% 0.1% TFA in acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

The compound eluted with a broad peak starting at 8.0 minutes. The collection was stopped after minute 15.0. A UV chromatogram at 210 nm is shown in the figure below.

LC-MS was used to make sure that no impurity eluted in the 8.0-15.0 minute range. The only peaks visible in the MS chromatogram of the collected fractions are M*H+ (m/z = 379.3) and 2M*H+ (m/z = 757.4).
2. List of X-ray Crystallographic Software Employed

APEX2 Version 2.2 /SHELXTL (Bruker AXS Inc., 2007)
SAINT Version 7.34a (Bruker AXS Inc., 2007)
SADABS Version 2007/2 (Sheldrick, Bruker AXS Inc.)
XPREP Version 2005/2 (Sheldrick, Bruker AXS Inc.)

Bruker suite of programs APEX2/SHELXTL, SAINT, SADABS, XPREP may be obtained from Bruker AXS.Inx, 5467 East Cheryl Parkway, Madison WI 53711

X-ray crystal structure figures were prepared using CrystalMaker 8.5 for Mac (CrystalMaker Software Ltd., Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK; http://www.crystalmaker.com)
3. Detailed Energetic Results for DFT Calculations

Cu-CBTE2P

<table>
<thead>
<tr>
<th>Method</th>
<th>Conformer</th>
<th>E (kcal/mol)</th>
<th>ZPE (kcal/mol)</th>
<th>ZPE-corr E (kcal/mol)</th>
<th>H° (kcal/mol)</th>
<th>S° (cal/mol K)</th>
<th>G° (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2233]/[2233]</td>
<td>2224578.459</td>
<td>303.547</td>
<td>-2224274.912</td>
<td>-2224259.710</td>
<td>151.315</td>
<td>-2224304.824</td>
</tr>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2323]/[2323]</td>
<td>2224577.968</td>
<td>303.065</td>
<td>-2224274.903</td>
<td>-2224259.624</td>
<td>152.192</td>
<td>-2224305.000</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>-0.491</td>
<td></td>
<td>-0.009</td>
<td>-0.086</td>
<td></td>
<td>0.176</td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2233]/[2233]</td>
<td>224057.804</td>
<td>302.986</td>
<td>-2223754.818</td>
<td>-2223739.849</td>
<td>149.505</td>
<td>-2223784.424</td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2323]/[2323]</td>
<td>224056.887</td>
<td>302.769</td>
<td>-2223754.118</td>
<td>-2223739.125</td>
<td>149.999</td>
<td>-2223783.847</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>-0.917</td>
<td></td>
<td>-0.700</td>
<td>-0.724</td>
<td></td>
<td>-0.577</td>
</tr>
<tr>
<td>M06/6-31+G**</td>
<td>[2233]/[2233]</td>
<td>224119.778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06/6-31+G**</td>
<td>[2323]/[2323]</td>
<td>224118.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Cu-CBTE1A1P

<table>
<thead>
<tr>
<th>Method</th>
<th>Conformer</th>
<th>E (kcal/mol)</th>
<th>ZPE (kcal/mol)</th>
<th>ZPE-corr E (kcal/mol)</th>
<th>H° (kcal/mol)</th>
<th>S° (cal/mol K)</th>
<th>G° (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2233]/[2233]</td>
<td>-1986668.793</td>
<td>296.081</td>
<td>-1986372.713</td>
<td>-1986358.562</td>
<td>144.926</td>
<td>-1986401.771</td>
</tr>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2323]/[2323]</td>
<td>-1986669.104</td>
<td>296.320</td>
<td>-1986372.784</td>
<td>-1986358.654</td>
<td>144.825</td>
<td>-1986401.833</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>0.311</td>
<td></td>
<td>0.071</td>
<td>0.092</td>
<td></td>
<td>0.062</td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2233]/[2233]</td>
<td>-1986163.941</td>
<td>295.292</td>
<td>-1985868.649</td>
<td>-1985854.737</td>
<td>142.918</td>
<td>-1985897.348</td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2323]/[2323]</td>
<td>-1986163.415</td>
<td>295.461</td>
<td>-1985867.954</td>
<td>-1985854.048</td>
<td>143.092</td>
<td>-1985896.711</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>-0.526</td>
<td></td>
<td>-0.695</td>
<td>-0.689</td>
<td></td>
<td>-0.637</td>
</tr>
<tr>
<td>M06/6-31+G**</td>
<td>[2233]/[2233]</td>
<td>-1986219.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cu-CBTE2A

<table>
<thead>
<tr>
<th>Method</th>
<th>Conformer</th>
<th>E (kcal/mol)</th>
<th>ZPE (kcal/mol)</th>
<th>ZPE-corrected E (kcal/mol)</th>
<th>Hº (kcal/mol)</th>
<th>Sº (cal/mol K)</th>
<th>Gº (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2233]/[2233]</td>
<td>-1748754.253</td>
<td>289.366</td>
<td>-1748464.887</td>
<td>-1748451.890</td>
<td>137.475</td>
<td>-1748492.879</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3LYP/6-31G*</td>
<td>[2323]/[2323]</td>
<td>-1748755.612</td>
<td>289.171</td>
<td>-1748466.441</td>
<td>-1748453.402</td>
<td>138.029</td>
<td>-1748494.555</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>1.359</td>
<td>1.554</td>
<td>1.512</td>
<td>1.676</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2233]/[2233]</td>
<td>-1748265.280</td>
<td>287.683</td>
<td>-1747977.597</td>
<td>-1747964.701</td>
<td>136.644</td>
<td>-1748005.442</td>
</tr>
<tr>
<td>M06/6-31G*</td>
<td>[2323]/[2323]</td>
<td>-1748266.435</td>
<td>288.257</td>
<td>-1747978.179</td>
<td>-1747965.361</td>
<td>136.448</td>
<td>-1748006.043</td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>1.155</td>
<td>0.582</td>
<td>0.660</td>
<td>0.601</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06/6-31+G**</td>
<td>[2233]/[2233]</td>
<td>-1748313.884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M06/6-31+G**</td>
<td>[2323]/[2323]</td>
<td>-1748314.563</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta (1st-2nd)</td>
<td></td>
<td>0.679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **UV/VIS Spectrum of Cu-CB-TE1A1P**

![UV/VIS Spectrum of Cu-CB-TE1A1P](image)

\[\lambda_{\text{max}} \text{ (aq)/nm} = 613 \ (\varepsilon/dm^3 \text{ mol}^{-1} \text{ cm}^{-1} \) \]

5. **NMR spectra of ligand 2 and precursor 6**

Table 1: NMR Spectral Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data File Name</td>
<td>RF-CB-TE1A1P_1H</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Solvent</td>
<td>D2O</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>28</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>3.0000</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2011-01-21T10:51:45</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>499.77707</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>7992.0</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-1419.1</td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>23976</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>

D$_2$O, 499.78 MHz, internal reference with MeCN set at δ 2.06
Region of interest: 1.70-1.89 ppm
Region of interest: 1.70-1.89 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 1.70-1.89 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 2.28 - 2.50 ppm
Region of interest: 2.28 - 2.50 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 2.28 - 2.50 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 2.52 - 2.61 ppm
Region of interest: 2.52 - 2.61 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 2.52 - 2.61 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 2.76 - 3.45 ppm
Region of interest: 2.76 - 3.45 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 2.76 - 3.45 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 3.49 - 3.78 ppm
Region of interest: 3.49 - 3.78 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 3.49 - 3.78 ppm

Exponential: -1.32
Gaussian: 0.60 GB
Region of interest: 3.78 - 4.15 ppm
Region of interest: 3.78 - 4.15 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 3.78 - 4.15 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

RF-CB-TE1A1P

Varian

D2O

16

3.0000

2011-01-24T15:29:41

499.7707

7992.0

-1396.6

1H

23976

65536

D2O, 499.78 MHz, internal reference with MeCN set at δ 2.06
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (f2, f1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>RF-CB-TE1A1P_COSY</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Solvent</td>
<td>D2O</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>16</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>0.1500</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2011-01-24T23:41:09</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>(499.7770691, 499.7770691)</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>(8000.0, 8000.0)</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>(-1396.1, -1397.1)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(1H, 1H)</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>(1200, 512)</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>(2048, 2048)</td>
</tr>
</tbody>
</table>

(See previous page for details of 1D proton spectrum.)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (f2, f1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>RF-CB-TE1A1P_COSY</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Solvent</td>
<td>D2O</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>16</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>0.1500</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2011-01-24T23:41:09</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>499.7770691, 499.7770691</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>(8000.0, 8000.0)</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>(-1396.1, -1397.1)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(1H, 1H)</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>(1200, 512)</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>(2048, 2048)</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Data File Name</td>
</tr>
<tr>
<td>2</td>
<td>Origin</td>
</tr>
<tr>
<td>3</td>
<td>Solvent</td>
</tr>
<tr>
<td>4</td>
<td>Number of Scans</td>
</tr>
<tr>
<td>5</td>
<td>Receiver Gain</td>
</tr>
<tr>
<td>6</td>
<td>Acquisition Time</td>
</tr>
<tr>
<td>7</td>
<td>Acquisition Date</td>
</tr>
<tr>
<td>8</td>
<td>Spectrometer Frequency</td>
</tr>
<tr>
<td>9</td>
<td>Spectral Width</td>
</tr>
<tr>
<td>10</td>
<td>Lowest Frequency</td>
</tr>
<tr>
<td>11</td>
<td>Nucleus</td>
</tr>
<tr>
<td>12</td>
<td>Acquired Size</td>
</tr>
<tr>
<td>13</td>
<td>Spectral Size</td>
</tr>
</tbody>
</table>

D₂O, 125.68 MHz, internal reference with MeCN set at δ 1.47
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment</td>
<td>RF-CB-TE1A1P-125 MHz</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Solvent</td>
<td>D2O</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>38000</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>1.0000</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2011-01-22T08:03:16</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>125.68036</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>31446.5</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-3692.7</td>
</tr>
<tr>
<td>Nucleus</td>
<td>13C</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>31447</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>

D$_2$O, 125.68 MHz, MeCN as internal interference, set at δ 1.47
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Comment</td>
<td>RF-CB-TE1A1P-100 MHz</td>
</tr>
<tr>
<td>2 Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>3 Solvent</td>
<td>D2O</td>
</tr>
<tr>
<td>4 Number of Scans</td>
<td>26560</td>
</tr>
<tr>
<td>5 Acquisition Time</td>
<td>1.0025</td>
</tr>
<tr>
<td>6 Acquisition Date</td>
<td>2011-01-25T18:03:03</td>
</tr>
<tr>
<td>7 Spectrometer Frequency</td>
<td>100.52657</td>
</tr>
<tr>
<td>8 Spectral Width</td>
<td>25062.7</td>
</tr>
<tr>
<td>9 Lowest Frequency</td>
<td>-1418.1</td>
</tr>
<tr>
<td>10 Nucleus</td>
<td>13C</td>
</tr>
<tr>
<td>11 Acquired Size</td>
<td>25126</td>
</tr>
<tr>
<td>12 Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>

D$_2$O, 100.53 MHz,
MeCN as internal interference, set at δ 1.47
black - 125.7 MHz
blue - 100.5 MHz
125 MHz

100 MHz
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

1	Origin	RF-CB-TE1A1P
2	Solvent	D2O
3	Temperature	25.0
4	Number of Scans	16
5	Acquisition Time	3.0000
6	Acquisition Date	2011-01-24T15:29:41
7	Spectrometer Frequency	499.77707
8	Spectral Width	7992.0
9	Lowest Frequency	-1396.6
10	Nucleus	1H
11	Acquired Size	23976
12	Spectral Size	65536

D$_2$O, 499.78 MHz, internal reference
with MeCN set at δ 2.06
Origin: RF-CB-TE1A1P
Solvent: D2O
Temperature: 25.0
Number of Scans: 38000
 Acquisition Time: 1.0000
 Acquisition Date: 2011-01-22T08:03:16
 Spectrometer Frequency: 125.68036
 Spectral Width: 31446.5
 Lowest Frequency: -3692.7
 Nucleus: 13C
 Acquired Size: 31447
 Spectral Size: 65536
(See previous two pages for corresponding
1D proton and carbon spectra)
RF-CB-TE1A1P_protected (CH2Cl2 extracts)

C6D6, 499.78 MHz, internal reference set to TMS at δ 0.00

Sample was dried over Na2SO4 prior to running NMR
Region of interest: 2.17 - 3.26 ppm
Region of interest: 2.44 - 3.00 ppm
Region of interest: 2.44 - 3.00 ppm
Region of interest: 2.44-3.00 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 2.44-3.00 ppm

Exponential: -1.32
Gaussian: 0.70 GB
Region of interest: 2.99-3.50 ppm

Exponential: -1.32
Gaussian: -1.00 GB
Region of interest: 2.99-3.50 ppm

Exponential: -1.32
Gaussian: -1.00 GB
Region of interest: 3.45 - 4.30 ppm
Region of interest: 3.45 - 4.30 ppm
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

(See previous page for corresponding 1D proton spectrum)
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

RF-CB-TE1A1P_protected_PhMe extracts

13C NMR, 125.68 MHz, C_6D_6 with reference peak set at δ 128.06 (central peak)
Electronic Supplementary Material (ESI) for Dalton Transactions

This journal is © The Royal Society of Chemistry 2011

![Chemical Structure]

RF-CB-TE1A1P_protected_PhMe extracts

13C NMR, 125.68 MHz, C$_6$D$_6$ with reference peak set at 128.06 ppm (central peak)

<table>
<thead>
<tr>
<th>1. Data File Name</th>
<th>RF-CB-TE1A1P_protected_PhMe_13C_2011-02-17/ CARBON</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>3. Solvent</td>
<td>C6D6</td>
</tr>
<tr>
<td>4. Number of Scans</td>
<td>5000</td>
</tr>
<tr>
<td>5. Receiver Gain</td>
<td>40</td>
</tr>
<tr>
<td>6. Acquisition Time</td>
<td>1.0000</td>
</tr>
<tr>
<td>7. Acquisition Date</td>
<td>2011-02-17T11:00:46</td>
</tr>
<tr>
<td>8. Spectrometer Frequency</td>
<td>125.68005</td>
</tr>
<tr>
<td>9. Spectral Width</td>
<td>31446.5</td>
</tr>
<tr>
<td>10. Lowest Frequency</td>
<td>-3735.5</td>
</tr>
<tr>
<td>11. Nucleus</td>
<td>13C</td>
</tr>
<tr>
<td>12. Acquired Size</td>
<td>31447</td>
</tr>
<tr>
<td>13. Spectral Size</td>
<td>65536</td>
</tr>
</tbody>
</table>
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

13C NMR, 100.52 MHz, C₆D₆ with reference peak set at 128.06 ppm (central peak)
apodisation for both = 3 Hz

black - 100.5 MHz
blue 125.7 MHz
125 MHz
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

125 MHz
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

C₆D₆, 499.78 MHz, internal reference set to TMS at δ 0.00
Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2011

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data File Name</td>
</tr>
<tr>
<td>2</td>
<td>Origin</td>
</tr>
<tr>
<td>3</td>
<td>Solvent</td>
</tr>
<tr>
<td>4</td>
<td>Number of Scans</td>
</tr>
<tr>
<td>5</td>
<td>Receiver Gain</td>
</tr>
<tr>
<td>6</td>
<td>Acquisition Time</td>
</tr>
<tr>
<td>7</td>
<td>Acquisition Date</td>
</tr>
<tr>
<td>8</td>
<td>Spectrometer Frequency</td>
</tr>
<tr>
<td>9</td>
<td>Spectral Width</td>
</tr>
<tr>
<td>10</td>
<td>Lowest Frequency</td>
</tr>
<tr>
<td>11</td>
<td>Nucleus</td>
</tr>
<tr>
<td>12</td>
<td>Acquired Size</td>
</tr>
<tr>
<td>13</td>
<td>Spectral Size</td>
</tr>
</tbody>
</table>

C₆D₆, 125.68 MHz, internal reference
set to TMS at δ 0.00
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (f2, f1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data File Name</td>
<td>RF-CB-TE1A1P_protected_PhMe_extracts_C6D6-HMQC</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Solvent</td>
<td>C6D6</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Receiver Gain</td>
<td>30</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>0.1500</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>2011-02-18T21:45:08</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>(499.7758484, 125.6775284)</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>(8000.0, 21361.8)</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>(-1496.6, -1206.5)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>(1H, 13C)</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>(1200, 255)</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>(2048, 2048)</td>
</tr>
</tbody>
</table>

(See previous two pages for corresponding 1D proton and carbon spectra)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>RF-CB-TE1A1P_protected-31P</td>
</tr>
<tr>
<td>Solvent</td>
<td>C6D6</td>
</tr>
<tr>
<td>Temperature</td>
<td>25.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>32</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>202.31</td>
</tr>
<tr>
<td>Spectral Width</td>
<td>50600.9</td>
</tr>
<tr>
<td>Lowest Frequency</td>
<td>-30527.2</td>
</tr>
<tr>
<td>Nucleus</td>
<td>31P</td>
</tr>
<tr>
<td>Acquired Size</td>
<td>80961</td>
</tr>
<tr>
<td>Spectral Size</td>
<td>262144</td>
</tr>
</tbody>
</table>

RF-CB-TE1A1P_protected_PhMe extracts

31P NMR, 202.31 MHz, C$_6$D$_6$, external reference with 85% phosphoric acid set to δ 0.00