Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions

(Electronic Supplementary Information)

Senem Karahan,*a,b Mehmet Zahmakıran)c and Saim Özkara

a Department of Chemistry, Middle East Technical University, 06531, Ankara, Turkey
b On the leave absence from Department of Chemistry, Dokuz Eylül University, 35160, İzmir, Turkey
c Department of Chemistry, Yüzüncü Yıl University, 65080, Van, Turkey
Fig. ESI-1 11B NMR spectrum of the reaction solution taken at the end of the hydrogen generation from hydrazine borane (400 mM) in a solution that contains 5 mL water and 5 mL methanol starting with NiCl$_2$ (5.0 mM) precatalyst at 25.0 ± 0.1 °C.
Fig. ESI-2 Volume of hydrogen (mL) versus time (min.) graph for the hydrogen generation from hydrazine borane (400 mM) in a solution that contains 5 mL water and 5 mL methanol starting with NiCl₂ (5.0 mM) precatalyst at 25.0 ± 0.1 °C.
Fig. ESI-3 XPS spectrum of the isolated solid at the end of the methanolysis of hydrazine borane (400 mM) starting with 4.0 mM NiCl₂ in 10 mL methanol at 25.0 ± 0.1 °C.
Fig. ESI-4 TEM image and corresponding TEM-EDX spectrum of the reaction solution harvested at the end of the methanolysis of hydrazine borane (400 mM) starting with 4.0 mM NiCl₂ in 10 mL methanol at 25.0 ± 0.1 °C (EDX spectrum also contains some impurities such as Si and Cu presumably coming from TEM grid).
Fig. ESI-5 Volume of hydrogen (mL) versus time (min.) graph for the methanolysis of hydrazine borane (400 mM) starting with Ni(II)-2-ethylhexanoate (11.0 mM) precatalyst in 10 mL methanol at 25.0 ± 0.1 °C.