A differential ICT based molecular probe for multi-ions and multifunction logic circuits

Vijay Luxami* and Subodh Kumar*
Guru Nanak Dev University
Amritsar, 143005, India

vj_luxami@yahoo.co.in, subodh_gndu@yahoo.co.in

Table of contents

Spectral curve fitting of absorbance data upon incremental addition of F^-. S1
Spectral curve fitting of absorbance data upon incremental addition of Cu^{2+}. S2
Spectral curve fitting of absorbance data upon incremental addition of Zn^{2+}. S3

Visible color change in presence of individual metals, anion and their combinations S4
Bar diagram showing execution of INHIBIT and XOR S5
Bar diagram showing execution of XOR and AND S6
Bar diagram showing execution of INHIBIT and XOR S7
Bar diagram showing execution of INHIBIT and XNOR S8
Absorption spectra showing the reversibility of outputs in presence of EDTA and self annihilation. S9

![Graph](image.png)

Fig. S1: The spectral fitting of the absorbance data on incremental addition of fluoride ions to the solution of probe 1 (20 µM, CH$_3$CN)
Fig. S2: The spectral fitting of the absorbance data on incremental addition of Cu$^{2+}$ ions to the solution of probe 1 (20 µM, CH$_3$CN)

The spectral fitting of these absorbance data shows the formation of M:L complex log β$_{LCu}$ = 6.78 ± 0.12.

Fig. S3: The spectral fitting of the absorbance data on incremental addition of Zn$^{2+}$ ions to the solution of probe 1 (20 µM, CH$_3$CN)

The spectral fitting of these absorbance data shows the formation of ML complex log β$_{LZn}$ = 5.6 ± 0.02
Fig. S4: The visible color changes observed on addition of F\(^{-}\), Zn\(^{2+}\), Cu\(^{2+}\) or both F\(^{-}\) and Cu\(^{2+}\) or F\(^{-}\) and Zn\(^{2+}\) ions to the solution of 1 (20 µM, CH\(_3\)CN).

Fig. S5: Bar diagram of half-subtractor showing the absorption intensities with different inputs; (a) only 1; (b) 1 + TBA F (80 µM); (c) 1 + Cu\(^{2+}\) (20 µM); (d) 1 + Cu\(^{2+}\) (20 µM) + TBA F (80 µM).

Fig. S6: Bar diagram of half-adder with the absorption intensities with different inputs; probe 1 (20 µM) (a) only 1; (b) 1 + TBA F (80 µM); (c) 1 + Cu\(^{2+}\) (20 µM); (d) 1 + Cu\(^{2+}\) (20 µM) + TBA F (80 µM); XOR at 495 nm AND at 610 nm.
Fig. S7: Bar diagram of half-adder with the absorption intensities with different inputs to 1 (20 µM, CH$_3$CN). (a) only 1; (b) 1 + TBA F (80 µM); (c) 1 + Zn$^{2+}$ (20 µM); (d) 1 + Zn$^{2+}$ (20 µM) + TBA F (80 µM). XOR at 495 nm, INHIBIT at 465 nm.

Fig. S8: Bar diagram of comparator logic function with the absorption intensities with different inputs to 1 (20 µM, CH$_3$CN). (a) only 1; (b) 1 + TBA F (80 µM); (c) 1 + Zn$^{2+}$ (20 µM); (d) 1 + Zn$^{2+}$ (20 µM) + TBA F (80 µM). XNOR at 400 nm, INHIBIT at 465 nm.
Fig. S9: (A) UV-vis spectra of probe 1 (20 µM, CH$_3$CN) (a) only 1; (b) 1 + Cu$^{2+}$ (20 µM); (c) 1 + Cu$^{2+}$ (20 µM) + TBA F (80 µM); (d) 1 + Cu$^{2+}$ (20 µM) + TBA F (80 µM) + EDTA (80 µM). (B) UV-vis spectra of probe 1 (20 µM, CH$_3$CN) (a) only 1; (b) 1 + TBA F (80 µM); (c) 1 + Zn$^{2+}$ (20 µM); (d) 1 + Zn$^{2+}$ (20 µM) + TBA F (80 µM).

The addition of EDTA removes Cu$^{2+}$ due to complex formation and free F$^-$ ions due to formation of HF or NaF.