Electronic Supplementary Information for manuscript entitled

# $2[Mn(acacen)]^+ + 1[Fe(CN)_5NO]^-$ polynuclear heterobimetallic coordination compounds of different dimensionality in the solid state

by Eugenia V. Peresypkina and Kira E. Vostrikova

**Crystallographic section** 

The following compounds are structurally characterized:

```
(2) [{Mn(acacen)H_2O}_2Fe(CN)_5NO]\cdot C_2H_5OH
```

(3)  $[\{Mn(acacen)H_2O\}_4(Fe(CN)_5NO][Fe(CN)_5NO]\cdot 4CH_3CN]$ 

(4)  $[\{Mn(acacen)\}_2(C_3H_7OH)\{Fe(CN)_5NO\}]_n$ 

(5)  $[{Mn(acacen)}_2Fe(CN)_5NO]_n$ 

 $acacen = C_{12}H_{18}N_2O_2$ 

Table 1S. Crystal data, data collection and structure refinement parameters for 2-5.

| Compound                                                               | 2                             | 3                                  | 4                             | 5                             |
|------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------------------------|-------------------------------|
| Empirical formula                                                      | $C_{31}H_{46}FeMn_2N_{10}O_8$ | $C_{66}H_{92}Fe_2Mn_4N_{24}O_{14}$ | $C_{32}H_{44}FeMn_2N_{10}O_6$ | $C_{29}H_{36}FeMn_2N_{10}O_5$ |
| Molecular weight                                                       | 852.51                        | 1777.10                            | 830.50                        | 770.41                        |
| Crystal system                                                         | monoclinic                    | tetragonal                         | monoclinic                    | tetragonal                    |
| Space group                                                            | C2/c                          | P4/n                               | $P2_1$                        | $P4_3$                        |
| a, Å                                                                   | 19.0620(5)                    | 20.6997(4)                         | 9.8861(6)                     | 10.8355(4)                    |
| b, Å                                                                   | 14.5264(4)                    | 20.6997(4)                         | 12.6888(6)                    | 10.8355(4)                    |
| c, Å                                                                   | 14.3781(3)                    | 9.9205(5)                          | 16.0244(9)                    | 29.115(2)                     |
| β, °                                                                   | 92.3120(10)                   | 90                                 | 107.5510(10)                  | 90                            |
| $V, Å^3$                                                               | 3978.09(17)                   | 4250.7(2)                          | 1916.57(18)                   | 3418.4(3)                     |
| Z                                                                      | 4                             | 2                                  | 2                             | 4                             |
| $D_{calc}, g/cm^3$                                                     | 1.423                         | 1.388                              | 1.439                         | 1.497                         |
| $\mu$ , mm <sup>-1</sup>                                               | 1.043                         | 0.979                              | 1.077                         | 1.199                         |
| $2\theta_{\rm max}$ , °                                                | 63.08                         | 59.32                              | 52.78                         | 55.00                         |
| Temperature, K                                                         | 100.0(2)                      | 120.0(2)                           | 150.0(2)                      | 301(2)                        |
| Crystal size, mm                                                       | 0.49×0.41×0.13                | 0.36×0.28×0.08                     | 0.145×0.080×0.075             | 0.14×0.14×0.12                |
| •                                                                      | $-27 \le h \le 27$ ,          | $-27 \le h \le 21$ ,               | $-12 \le h \le 12$ ,          | $-11 \le h \le 14$ ,          |
| Range h, k, l                                                          | $-21 \le k \le 20$ ,          | $-19 \le k \le 27$ ,               | $-15 \le k \le 8,$            | $-14 \le k \le 11$ ,          |
|                                                                        | $-13 \le l \le 19$            | $-13 \le l \le 13$                 | $-20 \le l \le 20$            | $-37 \le l \le 37$            |
| Reflns measured                                                        | 18426                         | 28719                              | 12744                         | 26240                         |
| Unique reflns                                                          | 5529                          | 5309                               | 5791                          | 7849                          |
| <b>R</b> <sub>int</sub>                                                | 0.0310                        | 0.0196                             | 0.0313                        | 0.0396                        |
| Observed (I > $2\sigma(I)$ )                                           | 5037                          | 4574                               | 5111                          | 6158                          |
| Refined parameters                                                     | 251                           | 267                                | 473                           | 435                           |
| Restraints                                                             | 0                             | 0                                  | 1                             | 1                             |
| $\mathbf{D} = \mathbf{D} \left( \mathbf{I} > 2 - (\mathbf{I}) \right)$ | $R_1 = 0.0696,$               | $R_1 = 0.0290,$                    | $R_1 = 0.0290,$               | $R_I = 0.0360,$               |
| $K_1, WK_2 (1 > 20(1))$                                                | $wR_2 = 0.1314$               | $wR_2 = 0.0690$                    | $wR_2 = 0.0598$               | $wR_2 = 0.0752$               |
| D wD (all data)                                                        | $R_1 = 0.0770,$               | $R_1 = 0.0371,$                    | $R_1 = 0.0381,$               | $R_1 = 0.0831$ ,              |
| $\mathbf{K}_1, W\mathbf{K}_2$ (all data)                               | $wR_2 = 0.1344$               | $wR_2 = 0.0731$                    | $wR_2 = 0.0625$               | $wR_2 = 0.0834$               |
| Goodness-of-fit on $F^2$                                               | 1.255                         | 1.080                              | 1.010                         | 0.954                         |
| Largest diff. peak,<br>hole (e Å <sup>-3</sup> )                       | 0.888/ -1.609                 | 0.846/-0.250                       | 0.408/ -0.327                 | 0.340/-0.221                  |

The disorder in 2 and 3. The nitroprusside anion in 2 and 3 (counter anion only) is disordered over two positions so that iron occupies two close positions switching between disordered CN and NO groups. As nitroprusside anion has similar dimensions despite nitrosyl and cyanogroup being in the axial position, crystal packing is not influenced by the nitroprusside flipping. Since the coordinated NO group is shorter than CN and the terminal atoms of nitroprusside CN groups are fixed within the crystal environment, the iron atom is disordered over two very close positions (~0.5 Å) while light atoms of NO and CN groups coincide (in 3, Fig 1aS) or almost coincide (in 2, Fig 1bS). Due to the fact that iron ion usually occupies special positions, the effect is averaged by symmetry. Therefore, elongation in the axial direction a.d.p. ellipsoid of iron atom may point to such disorder. The position of disordered Fe was resolved in both structures followed by decreasing residuals  $R_1$  and  $wR_2$ . Our attempts to split disordered positions for CN/NO groups succeeded in 2, and failed in 3. In 2 they are refined with anisotropic a.d.p. parameters, while in 3 with both coordinates and a.d.p. parameters set equal.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012



Fig. 1S The disorder model for nitroprusside anions found in 3 (a) and in 2 (b) with mixed and split positions of CN and NO ligands.

#### Compound 2. [ $\{Mn(acacen)H_2O\}_2Fe(CN)_5NO]\cdot C_2H_5OH$

|                                         | <b>Table 2S.</b> Selected geometric parameters $(Å, °)$ in <b>2</b> . |                                          |             |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------------|-------------|--|--|--|--|
| Mn1—O1                                  | 1.8970 (10)                                                           | C3—C4                                    | 1.423 (2)   |  |  |  |  |
| Mn1—O2                                  | 1.9082 (10)                                                           | C4—C5                                    | 1.510 (2)   |  |  |  |  |
| Mn1—N2                                  | 1.9697 (12)                                                           | C6—C7                                    | 1.512 (2)   |  |  |  |  |
| Mn1—N1                                  | 1.9710 (13)                                                           | С8—С9                                    | 1.512 (2)   |  |  |  |  |
| Mn1—O3                                  | 2.2471 (11)                                                           | C9—C10                                   | 1.431 (2)   |  |  |  |  |
| Mn1—N13                                 | 2.3325 (13)                                                           | C10-C11                                  | 1.371 (2)   |  |  |  |  |
| Fe1—N4                                  | 1.658 (3)                                                             | C11-C12                                  | 1.502 (2)   |  |  |  |  |
| Fe1—C13 <sup>i</sup>                    | 1.9337 (14)                                                           | Fe2—Fe2 <sup>iv</sup>                    | 0.5418 (12) |  |  |  |  |
| Fe1—C13 <sup>ii</sup>                   | 1.9337 (14)                                                           | Fe2—C21                                  | 1.532 (3)   |  |  |  |  |
| Fe1—C13                                 | 1.9337 (14)                                                           | Fe2—C22                                  | 1.9438 (16) |  |  |  |  |
| Fe1—C13 <sup>iii</sup>                  | 1.9337 (14)                                                           | Fe2—C22 <sup>v</sup>                     | 1.9438 (16) |  |  |  |  |
| Fe1—C15                                 | 1.945 (3)                                                             | Fe2—C22 <sup>iv</sup>                    | 1.9640 (16) |  |  |  |  |
| N13—C13                                 | 1.1467 (19)                                                           | Fe2—C22 <sup>vi</sup>                    | 1.9640 (16) |  |  |  |  |
| O4—N4                                   | 1.146 (4)                                                             | Fe2—C21 <sup>iv</sup>                    | 2.073 (3)   |  |  |  |  |
| N15-C15                                 | 1.147 (4)                                                             | Fe2—N21N <sup>iv</sup>                   | 2.073 (3)   |  |  |  |  |
| 01—C2                                   | 1.2982 (19)                                                           | C21—N21                                  | 1.154 (4)   |  |  |  |  |
| 02—C11                                  | 1.3036 (18)                                                           | C21—Fe2 <sup>iv</sup>                    | 2.073 (3)   |  |  |  |  |
| N1-C4                                   | 1.308 (2)                                                             | N22—C22                                  | 1.147 (2)   |  |  |  |  |
| N1-C6                                   | 1.4774 (19)                                                           | C22—Fe2 <sup>iv</sup>                    | 1.9640 (16) |  |  |  |  |
| N2-C9                                   | 1.300 (2)                                                             | N1S—C1S                                  | 1.142 (3)   |  |  |  |  |
| N2—C7                                   | 1.4732 (19)                                                           | C1S—C2S                                  | 1.454 (4)   |  |  |  |  |
| C1—C2                                   | 1.504 (2)                                                             | O3—H31                                   | 0.84 (3)    |  |  |  |  |
| С2—С3                                   | 1.372 (2)                                                             | O3—H32                                   | 0.79 (2)    |  |  |  |  |
| O1—Mn1—O2                               | 90.58 (4)                                                             | C2—C3—C4                                 | 126.03 (15) |  |  |  |  |
| O1—Mn1—N2                               | 176.26 (5)                                                            | N1—C4—C3                                 | 122.69 (14) |  |  |  |  |
| O2—Mn1—N2                               | 92.63 (5)                                                             | N1-C4-C5                                 | 120.17 (14) |  |  |  |  |
| O1—Mn1—N1                               | 92.60 (5)                                                             | C3—C4—C5                                 | 117.13 (15) |  |  |  |  |
| O2—Mn1—N1                               | 175.13 (5)                                                            | N1-C6-C7                                 | 108.94 (12) |  |  |  |  |
| N2—Mn1—N1                               | 84.33 (5)                                                             | N2—C7—C6                                 | 108.58 (12) |  |  |  |  |
| O1—Mn1—O3                               | 90.39 (4)                                                             | N2-C9-C10                                | 122.23 (13) |  |  |  |  |
| O2—Mn1—O3                               | 91.31 (4)                                                             | N2-C9-C8                                 | 121.14 (14) |  |  |  |  |
| N2—Mn1—O3                               | 87.62 (5)                                                             | С10—С9—С8                                | 116.62 (14) |  |  |  |  |
| N1—Mn1—O3                               | 92.36 (5)                                                             | С11—С10—С9                               | 125.74 (15) |  |  |  |  |
| O1—Mn1—N13                              | 93.49 (4)                                                             | O2-C11-C10                               | 125.25 (14) |  |  |  |  |
| O2—Mn1—N13                              | 87.44 (4)                                                             | O2-C11-C12                               | 114.16 (13) |  |  |  |  |
| N2—Mn1—N13                              | 88.57 (5)                                                             | C10-C11-C12                              | 120.56 (14) |  |  |  |  |
| N1—Mn1—N13                              | 88.68 (5)                                                             | Fe2 <sup>iv</sup> —Fe2—C21               | 180.000 (3) |  |  |  |  |
| O3—Mn1—N13                              | 175.93 (5)                                                            | Fe2 <sup>iv</sup> —Fe2—C22               | 84.16 (6)   |  |  |  |  |
| N4—Fe1—C13 <sup>i</sup>                 | 96.11 (5)                                                             | C21—Fe2—C22                              | 95.84 (6)   |  |  |  |  |
| N4—Fe1—C13 <sup>ii</sup>                | 96.11 (5)                                                             | Fe2 <sup>iv</sup> —Fe2—C22 <sup>v</sup>  | 84.16 (6)   |  |  |  |  |
| C13 <sup>i</sup> —Fe1—C13 <sup>ii</sup> | 89.352 (10)                                                           | C21—Fe2—C22 <sup>v</sup>                 | 95.84 (6)   |  |  |  |  |
| N4—Fe1—C13                              | 96.11 (5)                                                             | C22—Fe2—C22 <sup>v</sup>                 | 168.32 (12) |  |  |  |  |
| C13 <sup>i</sup> —Fe1—C13               | 89.352 (10)                                                           | Fe2 <sup>iv</sup> —Fe2—C22 <sup>iv</sup> | 79.91 (6)   |  |  |  |  |
| C13 <sup>ii</sup> —Fe1—C13              | 167.79 (9)                                                            | C21—Fe2—C22 <sup>iv</sup>                | 100.09 (6)  |  |  |  |  |
| N4—Fe1—C13 <sup>iii</sup>               | 96.11 (5)                                                             | C22—Fe2—C22 <sup>iv</sup>                | 88.979 (7)  |  |  |  |  |

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

| C13 <sup>i</sup> —Fe1—C13 <sup>iii</sup>  | 167.79 (9)  | $C22^{v}$ —Fe2—C22 <sup>iv</sup>          | 88.979 (7)  |
|-------------------------------------------|-------------|-------------------------------------------|-------------|
| C13 <sup>ii</sup> —Fe1—C13 <sup>iii</sup> | 89.352 (10) | Fe2 <sup>iv</sup> —Fe2—C22 <sup>vi</sup>  | 79.91 (6)   |
| C13—Fe1—C13 <sup>iii</sup>                | 89.352 (11) | C21—Fe2—C22 <sup>vi</sup>                 | 100.09 (6)  |
| N4—Fe1—C15                                | 180.000 (2) | C22—Fe2—C22 <sup>vi</sup>                 | 88.979 (7)  |
| C13 <sup>i</sup> —Fe1—C15                 | 83.89 (5)   | C22 <sup>v</sup> —Fe2—C22 <sup>vi</sup>   | 88.979 (7)  |
| C13 <sup>ii</sup> —Fe1—C15                | 83.89 (5)   | C22 <sup>iv</sup> —Fe2—C22 <sup>vi</sup>  | 159.83 (12) |
| C13—Fe1—C15                               | 83.89 (5)   | C21—Fe2—C21 <sup>iv</sup>                 | 180.000(1)  |
| C13 <sup>iii</sup> —Fe1—C15               | 83.89 (5)   | C22—Fe2—C21 <sup>iv</sup>                 | 84.16 (6)   |
| C13—N13—Mn1                               | 142.86 (11) | C22 <sup>v</sup> —Fe2—C21 <sup>iv</sup>   | 84.16 (6)   |
| N13-C13-Fe1                               | 175.96 (14) | C22 <sup>iv</sup> —Fe2—C21 <sup>iv</sup>  | 79.91 (6)   |
| O4—N4—Fe1                                 | 180.000 (2) | C22 <sup>vi</sup> —Fe2—C21 <sup>iv</sup>  | 79.91 (6)   |
| N15-C15-Fe1                               | 180.000 (1) | C21—Fe2—N21N <sup>iv</sup>                | 180.000(1)  |
| C2-O1-Mn1                                 | 127.76 (10) | C22—Fe2—N21N <sup>iv</sup>                | 84.16 (6)   |
| C11—O2—Mn1                                | 125.95 (9)  | C22 <sup>v</sup> —Fe2—N21N <sup>iv</sup>  | 84.16 (6)   |
| C4—N1—C6                                  | 120.78 (13) | C22 <sup>iv</sup> —Fe2—N21N <sup>iv</sup> | 79.91 (6)   |
| C4—N1—Mn1                                 | 125.91 (10) | C22 <sup>vi</sup> —Fe2—N21N <sup>iv</sup> | 79.91 (6)   |
| C6—N1—Mn1                                 | 112.57 (10) | N21—C21—Fe2                               | 180.000(1)  |
| C9—N2—C7                                  | 122.08 (12) | N21—C21—Fe2 <sup>iv</sup>                 | 180.000(1)  |
| C9—N2—Mn1                                 | 126.38 (10) | N22-C22-Fe2                               | 167.85 (18) |
| C7—N2—Mn1                                 | 111.25 (10) | N22—C22—Fe2 <sup>iv</sup>                 | 176.18 (18) |
| O1—C2—C3                                  | 124.68 (14) | Fe2—C22—Fe2 <sup>iv</sup>                 | 15.93 (4)   |
| 01—C2—C1                                  | 114.46 (14) | N1S-C1S-C2S                               | 178.6 (3)   |
| $C_{3}-C_{2}-C_{1}$                       | 120 86 (15) | H32_03_H31                                | 107 (2)     |

Symmetry code(s): (i) y, -x+3/2, z; (ii) -x+3/2, -y+3/2, z; (iii) -y+3/2, x, z; (iv) y+1/2, -x+1, -z+2; (v) -x+3/2, -y+1/2, z; (vi) -y+1, x-1/2, -z+2.

| Hydrogen bond   | D-H     | HA      | DA       | <(DHA) | Symmetry operations   |
|-----------------|---------|---------|----------|--------|-----------------------|
| O(3)-H(31)N(41) | 0.79(4) | 1.99(4) | 2.775(4) | 172(4) | -x+3/2, y+1/2, -z+1/2 |
| O(3)-H(32)O(1)  | 0.75(4) | 2.06(4) | 2.808(3) | 174(4) | -x+3/2, -y+1/2, -z    |
|                 |         |         |          |        |                       |



Fig. 2aS ORTEP plot (ellipsoids of 50% probability) with numerating scheme for [Mn(acacen)H<sub>2</sub>O]<sub>2</sub>[Fe(CN)<sub>5</sub>NO] in 2.

#### Hydrogen bonds (Å, °) in 2.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012



**Fig. 2bS** Molecular crystal packing (b) in [{Mn(acacen)H<sub>2</sub>O}<sub>2</sub>Fe(CN)<sub>5</sub>NO] in **2**. Hydrogen atoms for *acacen* ligands and EtOH solvent molecules are omitted for clarity. Hydrogen bonds are shown by dashed lines.

#### **Compound 3:** $[{Mn(acacen)H_2O}_4(Fe(CN)_5NO][Fe(CN)_5NO]\cdot 4CH_3CN$

|                        | able 55. Selected geome | enic parameters (A, ) in . | 5.          |
|------------------------|-------------------------|----------------------------|-------------|
| Mn1—O1                 | 1.8970 (10)             | C2—C3                      | 1.372 (2)   |
| Mn1—O2                 | 1.9082 (10)             | C3—C4                      | 1.423 (2)   |
| Mn1—N2                 | 1.9697 (12)             | C4—C5                      | 1.510(2)    |
| Mn1—N1                 | 1.9710 (13)             | C6—C7                      | 1.512 (2)   |
| Mn1—O3                 | 2.2471 (11)             | С8—С9                      | 1.512 (2)   |
| Mn1—N13                | 2.3325 (13)             | C9—C10                     | 1.431 (2)   |
| Fe1—N4                 | 1.658 (3)               | C10-C11                    | 1.371 (2)   |
| Fe1—C13 <sup>i</sup>   | 1.9337 (14)             | C11—C12                    | 1.502 (2)   |
| Fe1—C13 <sup>ii</sup>  | 1.9337 (14)             | Fe2—Fe2 <sup>iv</sup>      | 0.5418 (12) |
| Fe1—C13                | 1.9337 (14)             | Fe2—C21                    | 1.532 (3)   |
| Fe1—C13 <sup>iii</sup> | 1.9337 (14)             | Fe2—C22                    | 1.9438 (16) |
| Fe1—C15                | 1.945 (3)               | Fe2—C22 <sup>v</sup>       | 1.9438 (16) |
| N13—C13                | 1.1467 (19)             | Fe2—C22 <sup>iv</sup>      | 1.9640 (16) |
| 04—N4                  | 1.146 (4)               | Fe2—C22 <sup>vi</sup>      | 1.9640 (16) |
| N15-C15                | 1.147 (4)               | Fe2—C21 <sup>iv</sup>      | 2.073 (3)   |
| O1—C2                  | 1.2982 (19)             | Fe2—N21N <sup>iv</sup>     | 2.073 (3)   |
| O2-C11                 | 1.3036 (18)             | C21—N21                    | 1.154 (4)   |
| N1-C4                  | 1.308 (2)               | C21—Fe2 <sup>iv</sup>      | 2.073 (3)   |
| N1-C6                  | 1.4774 (19)             | N22—C22                    | 1.147 (2)   |
| N2—C9                  | 1.300 (2)               | C22—Fe2 <sup>iv</sup>      | 1.9640 (16) |
| N2—C7                  | 1.4732 (19)             | N1S—C1S                    | 1.142 (3)   |
| C1—C2                  | 1.504 (2)               | C1S—C2S                    | 1.454 (4)   |
|                        |                         |                            |             |
| O1—Mn1—O2              | 90.58 (4)               | O1—C2—C3                   | 124.68 (14) |
| O1—Mn1—N2              | 176.26 (5)              | 01—C2—C1                   | 114.46 (14) |
| O2—Mn1—N2              | 92.63 (5)               | N1-C4-C5                   | 120.17 (14) |
| O1—Mn1—N1              | 92.60 (5)               | C3—C4—C5                   | 117.13 (15) |
|                        |                         |                            |             |

Table 3S. Selected geometric parameters (Å, °) in 3.

## Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

| O2—Mn1—N1                                 | 175.13 (5)  | N1-C6-C7                                  | 108.94 (12) |
|-------------------------------------------|-------------|-------------------------------------------|-------------|
| N2—Mn1—N1                                 | 84.33 (5)   | N2—C7—C6                                  | 108.58 (12) |
| O1—Mn1—O3                                 | 90.39 (4)   | C3—C2—C1                                  | 120.86 (15) |
| O2—Mn1—O3                                 | 91.31 (4)   | C2—C3—C4                                  | 126.03 (15) |
| N2—Mn1—O3                                 | 87.62 (5)   | N1—C4—C3                                  | 122.69 (14) |
| N1—Mn1—O3                                 | 92.36 (5)   | N2-C9-C10                                 | 122.23 (13) |
| O1—Mn1—N13                                | 93.49 (4)   | N2-C9-C8                                  | 121.14 (14) |
| O2—Mn1—N13                                | 87.44 (4)   | С10—С9—С8                                 | 116.62 (14) |
| N2—Mn1—N13                                | 88.57 (5)   | C11—C10—C9                                | 125.74 (15) |
| N1—Mn1—N13                                | 88.68 (5)   | O2-C11-C10                                | 125.25 (14) |
| O3—Mn1—N13                                | 175.93 (5)  | O2-C11-C12                                | 114.16 (13) |
| N4—Fe1—C13 <sup>i</sup>                   | 96.11 (5)   | C10-C11-C12                               | 120.56 (14) |
| N4—Fe1—C13 <sup>ii</sup>                  | 96.11 (5)   | C21—Fe2—C22                               | 95.84 (6)   |
| C13 <sup>i</sup> —Fe1—C13 <sup>ii</sup>   | 89.352 (10) | C21—Fe2—C22 <sup>v</sup>                  | 95.84 (6)   |
| N4—Fe1—C13                                | 96.11 (5)   | C22—Fe2—C22 <sup>v</sup>                  | 168.32 (12) |
| C13 <sup>i</sup> —Fe1—C13                 | 89.352 (10) | C21—Fe2—C22 <sup>iv</sup>                 | 100.09 (6)  |
| C13 <sup>ii</sup> —Fe1—C13                | 167.79 (9)  | C22—Fe2—C22 <sup>iv</sup>                 | 88.979 (7)  |
| N4—Fe1—C13 <sup>iii</sup>                 | 96.11 (5)   | $C22^{v}$ —Fe2—C22 <sup>iv</sup>          | 88.979 (7)  |
| C13 <sup>i</sup> —Fe1—C13 <sup>iii</sup>  | 167.79 (9)  | C21—Fe2—C22 <sup>vi</sup>                 | 100.09 (6)  |
| C13 <sup>ii</sup> —Fe1—C13 <sup>iii</sup> | 89.352 (10) | C22—Fe2—C22 <sup>vi</sup>                 | 88.979 (7)  |
| C13—Fe1—C13 <sup>iii</sup>                | 89.352 (11) | C22 <sup>v</sup> —Fe2—C22 <sup>vi</sup>   | 88.979 (7)  |
| N4—Fe1—C15                                | 180.000 (2) | C22 <sup>iv</sup> —Fe2—C22 <sup>vi</sup>  | 159.83 (12) |
| C13 <sup>i</sup> —Fe1—C15                 | 83.89 (5)   | C21—Fe2—C21 <sup>iv</sup>                 | 180.000 (1) |
| C13 <sup>ii</sup> —Fe1—C15                | 83.89 (5)   | C22—Fe2—C21 <sup>iv</sup>                 | 84.16 (6)   |
| C13—Fe1—C15                               | 83.89 (5)   | $C22^{v}$ —Fe2—C21 <sup>iv</sup>          | 84.16 (6)   |
| C13 <sup>iii</sup> —Fe1—C15               | 83.89 (5)   | C22 <sup>iv</sup> —Fe2—C21 <sup>iv</sup>  | 79.91 (6)   |
| C13—N13—Mn1                               | 142.86 (11) | C22 <sup>vi</sup> —Fe2—C21 <sup>iv</sup>  | 79.91 (6)   |
| N13-C13-Fe1                               | 175.96 (14) | C21—Fe2—N21N <sup>iv</sup>                | 180.000 (1) |
| O4-N4-Fe1                                 | 180.000 (2) | C22—Fe2—N21N <sup>iv</sup>                | 84.16 (6)   |
| N15-C15-Fe1                               | 180.000 (1) | C22 <sup>v</sup> —Fe2—N21N <sup>iv</sup>  | 84.16 (6)   |
| C2                                        | 127.76 (10) | C22 <sup>iv</sup> —Fe2—N21N <sup>iv</sup> | 79.91 (6)   |
| C11—O2—Mn1                                | 125.95 (9)  | C22 <sup>vi</sup> —Fe2—N21N <sup>iv</sup> | 79.91 (6)   |
| C4—N1—C6                                  | 120.78 (13) | N21-C21-Fe2                               | 180.000 (1) |
| C4—N1—Mn1                                 | 125.91 (10) | N21—C21—Fe2 <sup>iv</sup>                 | 180.000 (1) |
| C6—N1—Mn1                                 | 112.57 (10) | N22—C22—Fe2                               | 167.85 (18) |
| C9—N2—C7                                  | 122.08 (12) | N22—C22—Fe2 <sup>iv</sup>                 | 176.18 (18) |
| C9—N2—Mn1                                 | 126.38 (10) | Fe2—C22—Fe2 <sup>iv</sup>                 | 15.93 (4)   |
| C7—N2—Mn1                                 | 111.25 (10) | N1S-C1S-C2S                               | 178.6 (3)   |

Symmetry code(s): (i) y, -x+3/2, z; (ii) -x+3/2, -y+3/2, z; (iii) -y+3/2, x, z; (iv) y+1/2, -x+1, -z+2; (v) -x+3/2, -y+1/2, z; (vi) -y+1, x-1/2, -z+2.

| Hydrogen bonds (Å, °) in <b>3.</b> |         |         |            |        |                     |
|------------------------------------|---------|---------|------------|--------|---------------------|
| Hydrogen bond                      | D-H     | HA      | DA         | <(DHA) | Symmetry operations |
| O(3)-H(32)O(2)                     | 0.79(2) | 2.01(2) | 2.7894(14) | 171(2) | -x+2, -y+1, -z+2    |
| O(3)-H(31)N(22)                    | 0.84(3) | 2.04(2) | 2.8510(19) | 162(2) | x, y, z             |
|                                    |         |         |            |        |                     |



Fig. 3aS ORTEP plot (ellipsoids of 50% probability) with numerating scheme in 3.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012



Fig. 3bS The layer based on hydrogen bonding between cations and anions in 3



Fig. 3cS Superposition of the layers in 3. Hydrogen atoms for acacen ligands are omitted for clarity.

| Table 4S. Selected geometric parameters (Å, °) in 4. |             |                      |            |  |  |
|------------------------------------------------------|-------------|----------------------|------------|--|--|
| Mn1—O3                                               | 2.263 (2)   | Fe1—C21              | 1.947 (4)  |  |  |
| Mn1—N1                                               | 1.979 (2)   | Fe1—C21 <sup>i</sup> | 1.917 (4)  |  |  |
| Mn1—N2                                               | 1.972 (2)   | Fe1—C31              | 1.971 (10) |  |  |
| Mn1—O1                                               | 1.915 (2)   | Fe1—C31 <sup>i</sup> | 1.534 (9)  |  |  |
| Mn1—O2                                               | 1.9004 (19) | Fe1—N51              | 1.632 (8)  |  |  |
| Mn1—N21                                              | 2.267 (2)   | Fe1—N51 <sup>i</sup> | 2.078 (8)  |  |  |
| N1C4                                                 | 1.305 (4)   | Fe1—C41              | 1.914 (4)  |  |  |
| N1-C6                                                | 1.475 (3)   | Fe1—C41 <sup>i</sup> | 1.969 (4)  |  |  |
| N2—C7                                                | 1.471 (4)   | N21—C21              | 1.147 (4)  |  |  |
| N2—C9                                                | 1.311 (4)   | C21—Fe1 <sup>i</sup> | 1.917 (4)  |  |  |
| C1—C2                                                | 1.504 (4)   | C31—Fe1 <sup>i</sup> | 1.534 (9)  |  |  |
| С2—С3                                                | 1.366 (4)   | C31—N31              | 1.176 (12) |  |  |
| C2—O1                                                | 1.313 (3)   | C31—O51 <sup>i</sup> | 1.271 (11) |  |  |
| C3—C4                                                | 1.429 (4)   | N31—N51 <sup>i</sup> | 1.122 (11) |  |  |
| C4—C5                                                | 1.505 (4)   | N51—Fe1 <sup>i</sup> | 2.078 (8)  |  |  |
| С6—С7                                                | 1.518 (4)   | N51—N31 <sup>i</sup> | 1.122 (11) |  |  |
| C8—C9                                                | 1.510 (4)   | N51-051              | 1.129 (9)  |  |  |

| Compound | :[{Mn(acacen)} <sub>2</sub> (C <sub>3</sub> H <sub>7</sub> OH){Fe(CN) <sub>5</sub> NO}] <sub>n</sub> |
|----------|------------------------------------------------------------------------------------------------------|
| Compound | :[{Mn(acacen)} <sub>2</sub> (C <sub>3</sub> H <sub>7</sub> OH){Fe(CN) <sub>5</sub> NO}] <sub>n</sub> |

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

| C9—C10                                 | 1.421 (4)   | O51—C31 <sup>i</sup>                   | 1.271 (11) |
|----------------------------------------|-------------|----------------------------------------|------------|
| C10-C11                                | 1.376 (4)   | C41—Fe1 <sup>i</sup>                   | 1.969 (4)  |
| C11—C12                                | 1.501 (4)   | C41—N41                                | 1.146 (4)  |
| C11—O2                                 | 1.301 (4)   | O1S-C1S                                | 1.318 (7)  |
| Fe1—Fe1 <sup>i</sup>                   | 0.448 (2)   | C1S-C1S <sup>ii</sup>                  | 1.489 (10) |
| O3—Mn1—N21                             | 178.19 (8)  | Fe1 <sup>i</sup> —Fe1—N51              | 172.5 (10) |
| N1—Mn1—O3                              | 91.06 (9)   | Fe1 <sup>i</sup> —Fe1—C41 <sup>i</sup> | 76.4 (8)   |
| N1—Mn1—N21                             | 87.85 (9)   | Fe1 <sup>i</sup> —Fe1—C41              | 90.5 (8)   |
| N2—Mn1—O3                              | 87.35 (9)   | C21 <sup>i</sup> —Fe1—C21              | 166.70(7)  |
| N2—Mn1—N1                              | 83.75 (10)  | C21 <sup>i</sup> —Fe1—C31              | 82.8 (3)   |
| N2—Mn1—N21                             | 91.10 (9)   | C21—Fe1—C31                            | 84.1 (3)   |
| O1—Mn1—O3                              | 92.03 (8)   | C21—Fe1—N51 <sup>i</sup>               | 84.0 (2)   |
| 01—Mn1—N1                              | 92.19 (9)   | C21 <sup>i</sup> —Fe1—N51 <sup>i</sup> | 82.7 (3)   |
| O1—Mn1—N2                              | 175.88 (9)  | C21 <sup>i</sup> —Fe1—C41 <sup>i</sup> | 88.38 (17) |
| 01—Mn1—N21                             | 89.46 (8)   | C21—Fe1—C41 <sup>i</sup>               | 88.49 (17) |
| O2—Mn1—O3                              | 88.21 (8)   | C31 <sup>i</sup> —Fe1—C21 <sup>i</sup> | 98.4 (4)   |
| O2—Mn1—N1                              | 176.05 (9)  | C31 <sup>i</sup> —Fe1—C21              | 94.6 (4)   |
| O2—Mn1—N2                              | 92.33 (9)   | C31 <sup>i</sup> —Fe1—C31              | 176.7 (2)  |
| O2—Mn1—O1                              | 91.72 (8)   | C31 <sup>i</sup> —Fe1—N51 <sup>i</sup> | 170.4 (5)  |
| O2—Mn1—N21                             | 92.77 (9)   | C31 <sup>i</sup> —Fe1—C41 <sup>i</sup> | 90.3 (4)   |
| C4—N1—Mn1                              | 125.77 (19) | C31 <sup>i</sup> —Fe1—C41              | 102.8 (4)  |
| C4—N1—C6                               | 122.2 (2)   | N51—Fe1—C21                            | 94.8 (3)   |
| C6—N1—Mn1                              | 112.05 (18) | N51—Fe1—C21 <sup>i</sup>               | 98.5 (3)   |
| C7—N2—Mn1                              | 111.93 (18) | N51—Fe1—C31                            | 174.4 (5)  |
| C9—N2—Mn1                              | 125.5 (2)   | N51—Fe1—N51 <sup>i</sup>               | 178.4 (2)  |
| C9—N2—C7                               | 122.5 (2)   | N51—Fe1—C41                            | 94.3 (3)   |
| C3—C2—C1                               | 121.0 (3)   | N51—Fe1—C41 <sup>i</sup>               | 98.8 (3)   |
| 01—C2—C1                               | 114.4 (2)   | C41—Fe1—C21 <sup>i</sup>               | 91.01 (18) |
| O1—C2—C3                               | 124.6 (3)   | C41—Fe1—C21                            | 89.11 (17) |
| C2—C3—C4                               | 126.6 (3)   | C41—Fe1—C31                            | 80.2 (3)   |
| N1-C4-C3                               | 121.9 (3)   | C41 <sup>i</sup> —Fe1—C31              | 86.7 (3)   |
| N1-C4-C5                               | 121.1 (3)   | C41 <sup>i</sup> —Fe1—N51 <sup>i</sup> | 80.1 (2)   |
| C3—C4—C5                               | 117.0 (3)   | C41—Fe1—N51 <sup>i</sup>               | 86.7 (2)   |
| N1-C6-C7                               | 107.4 (2)   | C41—Fe1—C41 <sup>i</sup>               | 166.84 (7) |
| N2-C7-C6                               | 108.1 (2)   | C21—N21—Mn1                            | 155.5 (2)  |
| N2-C9-C8                               | 120.7 (3)   | Fe1 <sup>i</sup> —C21—Fe1              | 13.30 (7)  |
| N2-C9-C10                              | 122.5 (3)   | N21-C21-Fe1                            | 172.3 (3)  |
| С10—С9—С8                              | 116.8 (3)   | N21—C21—Fe1 <sup>i</sup>               | 174.4 (3)  |
| C11—C10—C9                             | 125.8 (3)   | Fe1 <sup>i</sup> —C31—Fe1              | 3.3 (2)    |
| C10-C11-C12                            | 121.2 (3)   | N31—C31—Fe1 <sup>i</sup>               | 179.2 (9)  |
| O2-C11-C10                             | 124.9 (3)   | N31-C31-Fe1                            | 177.0 (7)  |
| O2-C11-C12                             | 113.9 (3)   | N31 <sup>i</sup> —N51—Fe1              | 159.1 (7)  |
| C2-01-Mn1                              | 125.10 (17) | N31 <sup>i</sup> —N51—Fe1 <sup>i</sup> | 158.1 (7)  |
| C11—O2—Mn1                             | 126.10 (19) | O51—N51—Fe1 <sup>i</sup>               | 178.0 (7)  |
| Fe1 <sup>i</sup> —Fe1—C21              | 79.5 (8)    | O51—N51—Fe1                            | 178.0 (7)  |
| Fel <sup>i</sup> —Fel—C2l <sup>i</sup> | 87.2 (8)    | N41—C41—Fe1 <sup>i</sup>               | 173.3 (3)  |
| Fel <sup>1</sup> —Fel—C31              | 11.2 (8)    | N41—C41—Fe1                            | 173.5 (3)  |
| Fe1 <sup>i</sup> —Fe1—C31 <sup>i</sup> | 165.5 (10)  | O1S—C1S—C1S <sup>ii</sup>              | 110.8 (4)  |

Symmetry code(s): (i) -x+3/2, -y-1/2, -z; (ii) -x+1, y, -z+1/2.

| Hydrogen | bonds | (Å, | °) | in | 4 |
|----------|-------|-----|----|----|---|
|----------|-------|-----|----|----|---|

| Hydrogen bond   | D-H     | HA      | DA       | <(DHA) | Symmetry operations |
|-----------------|---------|---------|----------|--------|---------------------|
| O(1s)-H(1)N(81) | 0.84(4) | 2.10(4) | 2.936(4) | 175(4) | -x+2, y+1/2, -z+1   |

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is © The Royal Society of Chemistry 2012



**Fig. 4S**. ORTEP plot (ellipsoids of 50% probability) with numerating scheme (a), simplified backbone of the right-handed helical chain (b, view along  $2_1$  axis).



**Fig. 4bS** Packing of the chains (c) in  $[{Mn(acacen)}_2(i-PrOH){Fe(CN)_5NO}]_n(4)$ . Hydrogen atoms of SB ligands are omitted for clarity. Hydrogen bonds are shown by dashed lines.

| Compound | 5:[{Mn(acacen | $\}_{2}Fe(CN)_{5}NO]_{n}$ |
|----------|---------------|---------------------------|
|----------|---------------|---------------------------|

| Table 55. Selected geometric parameters (A, ) in 5. |           |           |           |  |  |  |
|-----------------------------------------------------|-----------|-----------|-----------|--|--|--|
| Fe1—N16                                             | 1.644 (3) | C106—C107 | 1.497 (5) |  |  |  |
| Fe1—C15                                             | 1.923 (4) | C107—N102 | 1.472 (4) |  |  |  |
| Fe1—C11                                             | 1.942 (3) | N102—C109 | 1.313 (4) |  |  |  |
| Fe1—C12                                             | 1.953 (3) | C108—C109 | 1.503 (5) |  |  |  |
| Fe1—C14                                             | 1.966 (3) | C109—C110 | 1.402 (5) |  |  |  |
| Fe1—C13                                             | 1.966 (3) | C110—C111 | 1.362 (5) |  |  |  |
| C11—N11                                             | 1.150 (4) | C111—O102 | 1.297 (4) |  |  |  |
| N11—Mn1                                             | 2.375 (3) | C111—C112 | 1.495 (5) |  |  |  |
| C12—N12                                             | 1.143 (4) | Mn2—O202  | 1.896 (2) |  |  |  |
| N12—Mn2                                             | 2.441 (3) | Mn2       | 1.892 (2) |  |  |  |
| C13—N13                                             | 1.132 (4) | Mn2—N202  | 1.959 (3) |  |  |  |

Table 5S. Selected geometric parameters (Å, °) in 5.

# Electronic Supplementary Material (ESI) for Dalton Transactions This journal is C The Royal Society of Chemistry 2012

| N13—Mn2 <sup>i</sup>                               | 2.437 (3)            | Mn2-N201                      | 1.978 (3)                |
|----------------------------------------------------|----------------------|-------------------------------|--------------------------|
| C14—N14                                            | 1.145 (4)            | Mn2—N13 <sup>iv</sup>         | 2.437 (3)                |
| N14—Mn1 <sup>ii</sup>                              | 2.450 (3)            | O201—C202                     | 1.301 (4)                |
| C15—N15                                            | 1.150 (5)            | C201—C202                     | 1.510 (6)                |
| N16-016                                            | 1.132 (4)            | C202—C203                     | 1.352 (6)                |
| Mn1-0102                                           | 1.895 (2)            | C203—C204                     | 1.398 (6)                |
| Mn1-0101                                           | 1.901 (2)            | C204—N201                     | 1.297 (4)                |
| Mn1—N102                                           | 1 969 (3)            | C204—C205                     | 1 531 (5)                |
| Mn1N101                                            | 1.909 (3)            | N201-C206                     | 1.651(5)<br>1.462(5)     |
| Mn1N14 <sup>iii</sup>                              | 2450(3)              | C206_C207                     | 1.449(6)                 |
| 0101 - 0102                                        | 1.301(4)             | C200 C207                     | 1.454 (5)                |
| C101 - C102                                        | 1.301 (4)            | N202 C200                     | 1.434(3)<br>1.218(4)     |
| C101 - C102                                        | 1.433 (3)            | 11202 - C209                  | 1.510 (4)                |
| C102 - C103                                        | 1.303 (3)            | $C_{200} = C_{209}$           | 1.309 (3)                |
| C103—C104                                          | 1.408 (3)            | C209 - C210                   | 1.401 (3)                |
| C104—N101                                          | 1.510 (4)            | C210-C211                     | 1.330 (3)                |
| C104—C105                                          | 1.517(5)             | C211-0202                     | 1.300 (4)                |
| N101—C106                                          | 1.464 (4)            | C211—C212                     | 1.502 (5)                |
| N16—Fel—C15                                        | 175.29 (15)          | N102—C107—C106                | 107.2 (3)                |
| N16—Fe1—C11                                        | 92.93 (14)           | C109—N102—C107                | 122.7 (3)                |
| C15—Fe1—C11                                        | 82.49 (14)           | C109—N102—Mn1                 | 125.4 (2)                |
| N16—Fe1—C12                                        | 93.19 (15)           | C107—N102—Mn1                 | 111.9 (2)                |
| C15—Fe1—C12                                        | 85.73 (15)           | N102—C109—C110                | 121.8 (3)                |
| C11—Fe1—C12                                        | 90.15 (12)           | N102-C109-C108                | 120.3 (3)                |
| N16-Fe1-C14                                        | 97.07 (14)           | C110-C109-C108                | 117.9 (3)                |
| C15—Fe1—C14                                        | 87.52 (14)           | C111—C110—C109                | 126.6 (3)                |
| C11—Fe1—C14                                        | 169.95 (15)          | O102-C111-C110                | 124.3 (3)                |
| C12—Fe1—C14                                        | 90.20 (12)           | O102—C111—C112                | 114.0 (3)                |
| N16—Fe1—C13                                        | 92.45 (15)           | C110-C111-C112                | 121.7 (3)                |
| C15—Fe1—C13                                        | 88.56 (15)           | C111—O102—Mn1                 | 125.4 (2)                |
| C11—Fe1—C13                                        | 88 57 (13)           | O202—Mn2—O201                 | 93 27 (10)               |
| C12—Fe1—C13                                        | 174 27 (15)          | 0202 Mm2 $0201$               | 91 58 (11)               |
| $\frac{C12}{C14} = \frac{Fe1}{C13}$                | 90.09(12)            | O202 Mm2 N202                 | 174 86 (12)              |
| N11-C11-Fe1                                        | 1780(3)              | O201 Mn2 N202                 | 174 55 (11)              |
| $\frac{11-11}{1-11}$                               | 161 3 (3)            | 0202  Mn2  N201               | 02 15 (11)               |
| $\frac{11-11}{12} = \frac{11}{12} = \frac{11}{12}$ | 101.3(3)<br>177.5(3) | N202 Mn2 N201                 | 92.13 (11)<br>93.01 (12) |
| 112 - 012 - 101                                    | 177.3(3)             | $M_{202} = M_{12} = M_{201}$  | 03.01(12)                |
| V12— $N12$ — $N12$                                 | 138.9 (3)            | 0202—MII2—N13                 | 92.30 (10)               |
| $\frac{N13-C13-Fe1}{C12-N12-N12^{1}}$              | 1/3.9 (3)            | $V_{201} - Mn_2 - N13$        | 84.37 (10)               |
| C13—N13—Mn2                                        | 156.2 (3)            | N202— $NIn2$ — $N13$          | 97.11(11)                |
| NI4—CI4—Fel                                        | 177.9 (3)            | N201—Mn2—N13                  | 8/./5(11)                |
| CI4—NI4—MnI"                                       | 160.6 (3)            | 0202—Mn2—N12                  | 84.40 (9)                |
| NI5—CI5—Fel                                        | 175.8 (3)            | 0201—Mn2—N12                  | 92.23 (10)               |
| 016—N16—Fel                                        | 176.0 (3)            | N202—Mn2—N12                  | 86.58 (11)               |
| O102—Mn1—O101                                      | 93.27 (10)           | N201—Mn2—N12                  | 95.88 (11)               |
| O102—Mn1—N102                                      | 91.56 (10)           | N13 <sup>1v</sup> —Mn2—N12    | 175.13 (11)              |
| O101—Mn1—N102                                      | 175.17 (10)          | C202—O201—Mn2                 | 123.6 (2)                |
| O102—Mn1—N101                                      | 174.44 (11)          | O201—C202—C203                | 126.0 (3)                |
| O101—Mn1—N101                                      | 91.77 (11)           | O201—C202—C201                | 112.5 (4)                |
| N102—Mn1—N101                                      | 83.41 (11)           | C203—C202—C201                | 121.5 (4)                |
| O102—Mn1—N11                                       | 91.76 (9)            | C202—C203—C204                | 125.9 (3)                |
| O101—Mn1—N11                                       | 86.46 (10)           | N201-C204-C203                | 122.5 (3)                |
| N102—Mn1—N11                                       | 93.48 (11)           | N201—C204—C205                | 120.3 (4)                |
| N101—Mn1—N11                                       | 86.20 (10)           | C203—C204—C205                | 117.1 (3)                |
| O102—Mn1—N14 <sup>iii</sup>                        | 83.49 (9)            | C204—N201—C206                | 123.8 (3)                |
| O101—Mn1—N14 <sup>iii</sup>                        | 90.25 (10)           | C204—N201—Mn2                 | 125.0 (3)                |
| N102—Mn1—N14 <sup>iii</sup>                        | 90.22 (11)           | C206—N201—Mn2                 | 111.1 (2)                |
| N101—Mn1—N14 <sup>iii</sup>                        | 98.85 (10)           | C207—C206—N201                | 108.9 (3)                |
| N11_Mn1_N14 <sup>iii</sup>                         | 174 06 (10)          | N202-C207-C206                | 108 7 (3)                |
| C102 - 0101 - Mn1                                  | 1257(2)              | C209 N202 C207 C200           | 123 6 (3)                |
| 0101 - C102 - C102                                 | 123.7 (2)            | $C_{209} = N_{202} = C_{207}$ | 123.0 (3)                |
| 0101 - 0102 - 0103                                 | 1143(3)              | $C_{207}$ N202 NII2           | 127.2(2)<br>1116(2)      |
| C103 - C102 - C101                                 | 121.3 (3)            | N202 C200 C210                | 111.0(2)<br>1221(3)      |
| C103 - C102 - C101                                 | 121.3 (3)            | N202 - C209 - C210            | 122.1(3)<br>1210(4)      |
| $\frac{C102 - C103 - C104}{N101 - C104 - C102}$    | 120.0(3)<br>122.3(2) | C210 $C209$ $C208$            | 121.0(4)<br>1160(2)      |
| $\frac{1101 - C104 - C103}{1101 - C104 - C105}$    | 122.3 (3)            | $C_{210} - C_{209} - C_{208}$ | 110.7(3)                 |
| IN101-C104-C105                                    | 121.4 (4)            | 10211 - 0210 - 0209           | 120.3 (3)                |

#### Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

| C103—C104—C105 | 116.3 (3) | O202—C211—C210 | 125.1 (3) |
|----------------|-----------|----------------|-----------|
| C104—N101—C106 | 122.8 (3) | O202—C211—C212 | 114.1 (3) |
| C104—N101—Mn1  | 125.2 (3) | C210—C211—C212 | 120.8 (3) |
| C106—N101—Mn1  | 111.8 (2) | C211—O202—Mn2  | 124.5 (2) |
| N101—C106—C107 | 108.4 (3) |                |           |

Symmetry code(s): (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*-1, *z*.

#### No hydrogen bonds found in 5.



Fig. 5S ORTEP plot (ellipsoids of 50% probability) with numerating scheme (a) and four layered packing as a result of  $4_3$  screw axis (b) in crystal structure of [ $\{Mn(acacen)\}_2Fe(CN)_5NO]_n$  (5).

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2012

#### IR spectra, DSC and magnetic measurements



 $Fig. 6S IR (KBr): bleu - [\{Mn(acacen)\}_2(i-PrOH)\{Fe(CN)_5NO\}]_n, 4; red - [Mn(acacen)(MeOH)]_2[Fe(CN)_5NO] \cdot 1.5MeOH, 5, Since (MeOH)]_2[Fe(CN)_5NO] \cdot 1.5MeOH, 5, Since (MeOH)]_2[Fi(CN)_5NO] \cdot 1.5MeOH, 5, Since (MeOH)]_2[Fi(CN)_5NO] \cdot 1.5MeOH]_2[Fi(CN)_5NO] \cdot 1.5MeOH]_2[Fi(CN$ 



Fig. 7S DSC for  $[{Mn(acacen)}_2(i-PrOH){Fe(CN)_5NO}]_n(4)$ .



**Fig. 8S** Magnetic measurements at high temperature for  $[{Mn(acacen)}_2(i-PrOH){Fe(CN)_5NO}]_n(4)$ . Magnetic susceptibility data were collected on going up 305 K up to 400 and than on going down 400 up to 300 K.