Supporting Information

Synthesis of Porous Aromatic Framework with Tuning Porosity via Ionothermal Reaction

Wei Wanga, Hao Rena, Fuxing Suna, Kun Caia, Heping Maa, Jianshi Dub*, Huijun Zhaoc and Guangshan Zhua*

aState Key laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun 130012, China;
bChina Japan Union Hospital, Jilin University, Changchun 130031, China;
cGriffith School of Environment, Griffith University, Queensland 4222, Australia.

*To whom correspondence should be addressed to E-mail: djs3043@126.com and zhugs@jlu.edu.cn.
1. Instruments

The X-ray Photoelectron Spectroscopy (XPS) was performed using a Thermo ESCALAB250. The thermogravimetric analysis (TGA) was performed using a Netzch Sta 449c thermal analyzer system at the heating rate of 10 °C/min in air or N₂ atmosphere. The Inductive Coupled Plasma (ICP) analysis was measured using a Perkin Elmer Optima 3300DV. The Elemental analysis (for C, H, N) were measured using a Perkin Elmer 2400 Series II CHNS/O Analyzer. The FTIR spectra were measured using a Nicolet Impact 410 Fourier transform infrared spectrometer. The nitrogen adsorption isotherms were measured on a Quanta Autosorb-1c analyzer. The XRD was performed by a Rigaku D/max 2500 diffractometer using CuKα radiation, 40 kV, 200 mA with scanning rate of 0.3° min⁻¹ (20). Scanning electron microscopy (SEM) was recorded using a JEOL JEM 6700. Transmission electron microscopy (TEM) was recorded using a JEOL JEM 3010. The solid-state 13C NMR was performed by a Bruker Avance 400MHz Solid-State NMR Spectrometer.

2. Materials

All starting materials were purchased from commercial suppliers and used without further purification unless otherwise noted. The anhydrous ZnCl₂ was purchased from Aldrich and used in glove box. The Tetrakis (4-cyanophenyl) silican was prepared according to the previously reported method.[1]

3. Synthetic Procedures

Synthesis of PAF-16: General synthesis procedure: The monomer and the metal salt were transferred into a Pyrex ampoule (3*4 cm) in the glove box. The ampoule was evacuated, sealed and heated to 400 °C (PAF-16-1, PAF-16-2, PAF-16-3) and 600 °C (PAF-16-4) for 40 h (table 1). When the ampoule was cooled down to room temperature, the ampoule was opened carefully. The black block was stirred in the fresh water for 48 h three times to remove ZnCl₂. Further stirring in diluted HCl for 24 h was performed to purify the product. PAF-16 was isolated as a black rock in 76% yield.
Figure S1. Zn XPS pattern (a) and Cl XPS pattern (b) of PAF-16-3.
Table S1: Elemental analysis of the PAF-16. Si and Zn contents were determined by ICP.

<table>
<thead>
<tr>
<th></th>
<th>C (wt %)</th>
<th>H (wt %)</th>
<th>N (wt %)</th>
<th>Si (wt %)</th>
<th>Zn (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAF-16-1</td>
<td>63.15</td>
<td>3.56</td>
<td>4.96</td>
<td>1.51</td>
<td>8.56</td>
</tr>
<tr>
<td>PAF-16-2</td>
<td>64.74</td>
<td>3.08</td>
<td>5.30</td>
<td>2.17</td>
<td>10.24</td>
</tr>
<tr>
<td>PAF-16-3</td>
<td>65.0</td>
<td>3.94</td>
<td>3.74</td>
<td>1.8</td>
<td>16.45</td>
</tr>
<tr>
<td>PAF-16-4</td>
<td>77.23</td>
<td>2.27</td>
<td>5.46</td>
<td>2.63</td>
<td>0.21</td>
</tr>
<tr>
<td>Theoretical value</td>
<td>79.24</td>
<td>0.94</td>
<td>13.2</td>
<td>6.65</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure S2. a) FTIR spectra of TCPSi (black), PAF-16-1 (red), PAF-16-2 (blue), and PAF-16-4 (green). b) Details of PAF-16-1, PAF-16-2, PAF-16-3, and PAF-16-4.
Figure S3 The PXRD patterns of synthesized PAF-16-1 (red), PAF-16-2 (blue), and PAF-16-4 (green).
Figure S4. a) TGA plots of PAF-16-1 (black), PAF-16-2 (red), and PAF-16-4 (blue) under air atmosphere; b) TGA plot of PAF-16-4 under N₂ atmosphere.
Figure S5. SEM images of PAF-16-1 (a), PAF-16-2 (b), and PAF-16-4(c); TEM images of PAF-16-1 (d), PAF-16-2 (e), and PAF-16-4(f).
Figure S6. NL-DFT pore size distributions of the PAF-16 materials.
Figure S7. Solid–state 13C NMR of PAF-16-2.

Reference: