Supporting Information for

How big is a Cp? Cycloheptatrienyl Zirconium Complexes with Bulky Cyclopentadienyl and Indenyl Ligands

Andreas Glöckner,^a Heiko Bauer,^b Miyuki Maekawa,^a Thomas Bannenberg,^a Constantin G. Daniliuc,^a Peter G. Jones,^a Yu Sun,^c Helmut Sitzmann,^{b,*} Matthias Tamm^{a,*} and Marc D. Walter^{a,*}

Table of Contents:

1.	. Computational Details		
	- Comparison of theoretical with experimental results		
	- Structures and XYZ coordinates		
2.	Experimental Details	S8	
3.	Measurement of Θ and Ω	S10	
4.	Comparison between cone angles Θ based on calculated (DFT)		
	and experimental structures (X-ray) for $[(\eta^7-C_7H_7)Zr(\eta^5-{}^4Cp)]$	S26	
5.	References	S26	

1. Computational Details

All computations were performed using the DFT functional methods M06 as implemented in the Gaussian09 program.^[1] The all-electron triple- ζ basis set (6-311G^{**})^[2] was applied for all main-group elements (C and H), together with the effective core potential double- ζ basis set (Stuttgart RSC 1997 ECP) for the transition metal (Zr).^[3]

(Common and	$\mathbf{E}(0 \mathbf{K})^{a}$	H(298 K) ^b	G(298 K) ^b
Compound	[Ha]	[Ha]	[Ha]
$[(\eta^{7}-C_{7}H_{7})Zr(\eta^{5}-{}^{4}Cp)] (4)$	-982.267753	-982.238916	-982.322518
Isomer-1	-982.263400	-982.234347	-982.318290
Isomer-2	-982.264612	-982.235497	-982.319720
Isomer-3	-982.261859	-982.233021	-982.316290
$[(\eta^{7}-C_{7}H_{7})Zr(\eta^{5}-C_{7}C_{7})] (7)$	-1100.049170	-1100.016005	-1100.107138

^{*a*}DFT energy incl. ZPE.

^{*b*}standard conditions T = 298.15 K and p = 1 atm.

(atom, x-, y-, z-positions in Å):

	Struc	ture of	4
Zr	1.107400	-0.106600	-0.148900
c	2.887800	1.414100	-0.184500
0	2.521500	-0.097800	-2 177500
c	2.325000	-1 401800	-2.177500
c	2.772000	-1.778700	-0.293300
c	3.083700	-0.941300	0.813300
c	3.142700	0.480100	0.858100
с	-0.696500	1.296400	0.913500
с	-1.217200	0.898200	-0.354600
с	-1.400400	-0.523400	-0.332300
с	-0.988400	-0.998000	0.949100
с	-0.558500	0.126800	1.699700
c	-0.471200	2.710300	1.385800
c	-1.805600	3.348100	1.772200
c	0.491200	2.797900	2.561200
c	-1.653600	1.871900	-1.427500
2	-0.994200	1.695500	-2.793000
c	-2.046400	-1.338700	-1.432100
c	-3.386700	-1.923600	-0.990100
c	-1.140000	-2.408900	-2.033300
с	-1.150100	-2.380100	1.533900
с	-2.332700	-2.388500	2.502000
с	0.101700	-2.893600	2.234000
н	2.887200	2.459700	0.110300
н	2.288600	2.035600	-2.132200
н	1.944200	-0.052500	-3.194900
н	2.136600	-2.216400	-2.275500
н	2.703000	-2.841000	-0.077400
н	3.206900	-1.446500	1.767000
н	3.308800	0.908800	1.842300
n v	-0.18/100	2 200000	2.718400
n v	-2.272700	3.290900	2 592200
	-2 509100	3 373100	0 934500
н	-1.661900	4.375700	2.124600
н	0.079800	2.291500	3.443000
н	0.659800	3.843500	2.838700
н	1.460200	2.344200	2.332000
н	-1.352700	2.868400	-1.073100
н	-3.560200	0.985500	-2.029600
н	-3.499000	2.744000	-2.175900
н	-3.661000	1.986700	-0.578900
н	0.091300	1.813200	-2.722900
н	-1.372500	2.447100	-3.495600
H	-1.190700	-0.642200	-3.230500
u u	-3.921100	-2 344000	-2.245600
н	-4.022100	-1.154000	-0.537800
н	-3.262900	-2.727700	-0.257600
н	-0.270500	-1.953100	-2.520800
н	-1.679700	-2.995200	-2.786100
н	-0.763400	-3.106300	-1.276100
н	-1.379000	-3.078700	0.719800
н	-2.124700	-1.742700	3.363500
н	-2.524300	-3.399600	2.878700
н	-3.246400	-2.019100	2.025900
н	0.942200	-2.980300	1.537100
H	-0.080700	-3.879700	2.675200
M	0 409200	-2 222600	4 045900

(atom, x-, y-, z-positions in Å):

]	Isome	r-1 of	(4)	
1	Zr	-1.127400	-0.035200	0.076900	
	С	-2.970700	-1.362200	-0.535400	
	С	-3.103600	-0.103500	-1.182900	
	С	-2.993900	1.200000	-0.622000	
	с	-2.727800	1.564300	0.728800	
	с	-2.507300	0.714700	1.847200	
	с	-2.491600	-0.706100	1.894400	
	c	-2.691300	-1.631800	0.833600	
	c	0.789400	1.100200	-1.118800	
	c	0.595800	-0.161900	-1./33000	
	c	1 345000	-1.195100	0.320300	
	č	1.260900	0.857600	0.337300	
	č	1.200300	-1 259200	1 611900	
	č	1.090600	-2 645200	-1 214600	
	c	0.684300	2 393200	-1 894600	
	č	1.756400	1.929600	1.153400	
	č	0.959000	-2.262300	2.264300	
	č	3.263800	-1.899400	1.315700	
	č	0.962400	2.057200	2,450500	
	ċ	3.257500	1.808600	1.419800	
	ċ	-0.145700	3.510100	-1.270200	
	с	2.081700	2.893000	-2.262400	
	с	-0.181000	-3.271200	-1.770900	
	c	2.231800	-2.782800	-2.222100	
	н	-2.588500	2.626300	0.911700	
1	н	-3.039200	2.018400	-1.334300	
1	н	-3.206200	-0.141300	-2.263500	
1	н	-2.992200	-2.226600	-1.191100	
1	н	-2.527600	-2.676400	1.085200	
1	н	-2.206300	-1.138300	2.848900	
	н	-2.224200	1.214800	2.768800	
	н	2.085700	-0.482100	2.363600	
1	н	1.371100	-3.215200	-0.321100	
	н	0.180300	2.121900	-2.835900	
	н	1.628100	2.881200	0.626200	
	н	0.666900	-3.067700	1.581000	
	н	1.435800	-2.727100	3.135200	
	н	0.040900	-1.//0400	2.605200	
	н	3.938000	-1.193/00	0.818900	
	н	3.741900	-2.233800	2.243500	
		0.070300	2 327700	2 242500	
	н	0.950900	1 125100	3 027800	
	н	1.392500	2.836300	3.090600	
	н	3.815300	1.705900	0.482300	
	н	3.623500	2.703100	1.936300	
	н	3,503000	0.946600	2.048600	
1	н	-1.170800	3.183000	-1.076800	
	н	0.271000	3.868900	-0.323400	
1	н	-0.186800	4.368500	-1.950300	
	н	2.667100	2.102500	-2.742900	
	н	2.024500	3.744500	-2.949700	
	н	2.633200	3.221600	-1.373500	
1	н	-0.964600	-3.320100	-1.008400	
1	н	-0.573400	-2.693300	-2.616700	
1	н	0.014500	-4.289000	-2.126500	
1	н	1.969200	-2.298000	-3.169800	
1	н	3.150800	-2.314500	-1.854700	
1	н	2.442000	-3.837400	-2.433600	
1	н	0.256000	-0.300900	-2.756000	

(C_{2v}-Symm.) (atom, x-, y-, z-positions in Å):

	Isome	r-2 of	(4)	
2-	1 110 200	0.002200	0.052700	
21 C	1.002800	-1.154800	0.745700	
č	0.813000	0.002400	1.541800	
С	0.995100	1.161300	0.746300	
с	1.255100	0.723900	-0.584800	
с	1.259800	-0.714900	-0.585200	
c	1.652600	1.590900	-1.757100	
c c	1.155400	2.552000	1.317800	
c	1.662500	-1.578700	-1.758100	
č	0.675000	2,709000	-2.110900	
c	3.068700	2.133200	-1.557600	
с	3.082600	-2.110800	-1.559900	
С	0.693000	-2.704100	-2.111100	
С	2.351700	-2.569500	2.267200	
с	-0.091200	-3.066400	2.019400	
c	-0.117800	3.067800	2.010800	
c c	2.326900	2.586500	2.275700	
c	-2.950000	0.000600	1 301100	
c c	-2.945800	-0.000000	0 700600	
č	-2.727900	-1.611900	-0.667300	
č	-2.556100	-0.732400	-1.771600	
c	-2.561100	0.691900	-1.781900	
С	-2.739800	1.585300	-0.690000	
н	1.689200	0.939900	-2.640600	
н	1.362100	3.237900	0.494000	
н	1.380900	-3.230000	0.494000	
н	1.693300	-0.927200	-2.641600	
н	0.512700	3.410600	-1.285800	
н	1.055500	3.286500	-2.961300	
н	-0.301500	2.301500	-2.391300	
н	3 424500	2.637700	-2 463000	
н	3.109800	2.859100	-0.737200	
н	3.776900	-1.297500	-1.321300	
н	3.128900	-2.837500	-0.740500	
н	3.441700	-2.611600	-2.466000	
н	-0.286300	-2.303900	-2.392300	
н	1.078100	-3.279600	-2.960800	
н	0.535500	-3.406000	-1.285400	
н	3.253500	-2.182600	1.781200	
н	2.159900	-1.950000	3.151200	
н	-0.921700	-3.589000	1 315300	
н	0.103100	-4.041400	2.480300	
н	-0.417100	-2.382600	2.813600	
н	-0.944400	3.174200	1.301000	
н	-0.444500	2.383100	2.803900	
н	0.067400	4.044900	2.471200	
н	2.134200	1.967300	3.157700	
н	3.233800	2.204600	1.793200	
н	2.521800	3.608400	2.617900	
н	0.620900	0.001400	2.610800	
н	-2.577800	-2.007300	-0.879500	
н	-2.948400	-2.123200	2 385500	
н	-2,967200	2.123600	1.359500	
н	-2.598100	2.639000	-0.916200	
н	-2.318900	1.152300	-2.735400	
н	-2.310200	-1.204500	-2.718400	

(atom, x-, y-, z-positions in Å):

	Isome	r-3 of	(4)	
Zr	1.092400	0.007400	-0.246200	
с	2.595200	1.765000	-0.624100	
С	2.111100	1.337600	-1.893200	
с	2.045600	0.012900	-2.410300	
С	2.422200	-1.206200	-1.782900	
С	2.956900	-1.413900	-0.480700	
с	3.270000	-0.439900	0.508100	
c	3.117400	0.973800	0.437600	
c	-0.764500	1.175600	0.989500	
c	-1.369900	0.618400	-0.185200	
c	-1.309100	-0.81/100	-0.066500	
č	0.337300	-1.11/800	1.109500	
č	-0.655400	2 635400	1.366500	
č	-1.980400	3.161400	1.917700	
č	0.439400	2.895700	2.393100	
c	-2.013800	1.514300	-1.223800	
С	-3.523800	1.668500	-1.012500	
С	-1.725300	1.186400	-2.683300	
С	-1.886100	-1.932900	-0.923000	
С	-1.082100	-2.294000	-2.168700	
С	-3.363700	-1.762100	-1.258700	
с	-0.464900	-2.486000	1.775000	
с	-1.738300	-2.897100	2.514000	
c	0.725600	-2.563000	2.721100	
н	2.463800	2.820700	-0.402600	
н	1.666900	2.110900	-2.513400	
	2 182100	-0.091800	-3.374100	
п ц	2.185100	2.108000	-2.338200	
н	3 586700	-0.828700	1 471600	
н	3.337600	1.509800	1.356300	
н	0.166500	0.200700	2.761400	
н	-0.406200	3.213800	0.463600	
н	-2.297400	2.553500	2.774200	
н	-2.781300	3.139400	1.175300	
н	-1.871900	4.196500	2.261200	
н	0.189400	2.434500	3.356400	
н	0.544000	3.971300	2.568800	
н	1.409400	2.504900	2.071600	
н	-1.574100	2.507800	-1.050200	
н	-4.0/5400	0.801400	-1.386/00	
н	-3 780900	1 78 3900	0.044100	
н	-0.650200	1.098000	-2.874100	
н	-2.119800	1,980800	-3.326900	
н	-2.203600	0.254100	-2.997500	
н	-1.840300	-2.823400	-0.283100	
н	-1.539300	-3.150600	-2.678300	
н	-0.055100	-2.569800	-1.905400	
н	-1.033000	-1.469100	-2.885600	
н	-3.939400	-1.442200	-0.383300	
н	-3.777300	-2.714200	-1.609300	
н	-3.524300	-1.030400	-2.056300	
н	-0.283400	-5.207700	0.963900	
н	-1.929000	-2.198300	3.33/600	
н	-1.644500	-3.903600	2.957200	
п	1 659100	-2.000000	2 229700	
н	0.845800	-3.583800	3.098600	
н	0.580800	-1.912100	3.591400	

(atom, x-, y-, z-positions in Å):

	Struct	ure of	f (7)	
Zr	1.238300	-0.008700	-0.002900	
c	-0.990400	0.824400	0.898500	
c	-1.000100	-0.597000	-0.246000	
c	-0.993800	-0.130000	-1.209300	
с	-0.991000	1.112800	-0.501300	
C C	-1.178500	-0.266700	-2.708500	
č	-1.204800	-1.371600	2.346200	
с	-1.170200	1.817700	2.029800	
c	-1.187500	2.496300	-1.091400	
c	-2.579200	-0.780000	-3.049700	
С	-0.072900	2.998600	-2.004700	
С	-2.557900	2.630200	-1.758900	
c	-0.088600	2.886600	2.164200	
c	-0.096400	-1.248000	3.387400	
c	-2.576900	-1.086300	2.962100	
С	-0.114800	-3.602200	-0.111800	
c	-2.596700	-3.133100	-0.145800	
c	2.942400	-0.615900	1.519600	
с	2.929600	0.802700	1.428300	
с	2.926000	1.615600	0.260900	
c	2.948800	1.199400	-1.098000	
c	2.955000	-0.120500	-1.624700	
Ĥ	-1.118200	0.746800	-3.119900	
н	-1.207800	-2.719100	-1.674500	
н	-1.220900	-2.429900	2.065800	
н	-1.122400	3 189600	2.957600	
н	-0.026000	-2.099500	-3.096300	
н	-0.336500	-1.099300	-4.518300	
н	0.876100	-0.602600	-3.326500	
н	-3.350400	-0.214800	-2.515500	
н	-2.704300	-1.836100	-2.789100	
н	0.866300	3.096900	-1.450500	
н	0.113700	2.333400	-2.855200	
н	-0.330800	3.985000	-2.408000	
н	-2.774400	3.682600	-1.975400	
н	-2.612600	2.085300	-2.706800	
н	0.892000	2.430500	2.330900	
н	-0.008500	3.525100	3.017400	
н	-3.341900	1.691700	1.860600	
н	-2.764100	2.980200	2.936200	
н	-2.667500	3.178100	1.186500	
н	0.839800	-1.666100	3.005200	
н	-0.367000	-1.801100	4.294600	
н	-3.369600	-1.137800	2.207700	
н	-2.802400	-1.822600	3.742000	
н	-2.625900	-0.096700	-0 589500	
н	0.044300	-3.567100	0.971500	
н	-0.372200	-4.635100	-0.374600	
н	-2.678200	-3.245100	0.940000	
н	-3.376500	-2.433000	-0.465000	
н	2.811700	2.683400	0.426800	
н	2.831300	1.328300	2.373800	
н	2.854400	-1.014300	2.525300	
н	2.814100	-2.613400	0.795000	
н	2.880900	-0.187900	-2.705500	
н	2.856300	1.991200	-1.835400	

2. Experimental Details

1,1,3-Tris(cyclohexyl)indene. Aqueous KOH (50 %; 0.75 L, ca. 10 mol) and Adogen-464 (5 g) were placed in a 2-L three neck round bottom flask fitted with a condenser, mechanical stirrer, heating mantle, and a dropping funnel. Indene (24.9 g, 0.21 mol) and cyclohexyl bromide (139.7 g, 105 mL, 0.86 mol) were added under rapid stirring to the reaction mixture via an addition funnel at a rate that the reaction temperature did not exceed 40 °C. After complete addition the reaction mixture was stirred under reflux for 24 h. The reaction mixture was allowed to cool to room temperature and extracted with diethyl ether (2 x 500 mL). The organic layers were combined, dried over anhydrous Mg₂SO₄, filtered and the solvent was evaporated. The obtained residue was allowed to stand at room temperature overnight upon which a colorless crystalline solid formed which was isolated and washed with cold diethyl ether. Yield: 18.3 g (0.05 mmol, 24 %). The colorless crystals were analyzed by X-ray crystallography and ¹H and ¹³C{¹H} NMR spectroscopy. ¹H NMR (CDCl₃, 24 °C): δ 7.30-7.24 (m, 4H, 4H-7H), 5.89 (s, 1H, 2-H), 2.77-2.50 (m, 3H, cyclohexyl-CH), 2.08-0.61 (m, 30H, cyclohexyl-CH₂). ¹³C{¹H} NMR (CDCl₃, 25 °C): δ 150.6, 148.3, 145.9 (3C_{ipso}), 133.9, 125.7, 124.0, 122.7, 118.7 (5C, C₉H₅), 61.7 (1C, C_{indene}(cyclohexyl-2H₂), 27.4 (2C, cyclohexyl-CH₂), 27.14 (3C, cyclohexyl-CH), 32.7 (2C, cyclohexyl-CH₂), 28.0 (2C, cyclohexyl-CH₂), 27.4 (2C, cyclohexyl-CH₂), 27.14 (3C, cyclohexyl-CH₂), 27.1 (3C, cyclohexyl-CH₂), 26.82 (2C, cyclohexyl-CH₂), 26.77 (3C, cyclohexyl-CH₂), 26.6 (1C, cyclohexyl-CH₂). GC-MS: m/e = 362 (M⁺).

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions

Volume Z Density (calculated) Absorption coefficient F(000) Crystal size $C_{27}H_{38}$ 362.57 100(2) K 0.71073 Å Monoclinic $P 2_1/n$ a = 11.5611(4) Å $\alpha = 90^{\circ}$ b = 13.3654(4) Å $\beta = 96.061(2)^{\circ}$ c = 13.8835(4) Å $\gamma = 90^{\circ}$ 2133.27(12) Å³ 4 1.129 Mg/m^3 0.063 mm⁻¹ 800 0.27 x 0.22 x 0.20 mm³

Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 26.37° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data)

Largest diff. peak and hole

2.34 to 26.37° $-14 \le h \le 14$, $-16 \le k \le 16$, $-17 \le l \le 17$ 69085 4355 [R(int) = 0.0504] 99.8 % None Full-matrix least-squares on F² 4355 / 0 / 244 0.954 R1 = 0.0376, wR2 = 0.0873 R1 = 0.0598, wR2 = 0.0912 0.249 and -0.168 e.Å⁻³

3. Measurement of Θ and Ω

Values used for the determination of Θ or Ω are highlighted in yellow.

$[(\eta^7 - C_7 H_7) Zr(\eta^5 - C_5 H_5)]$

Centroid-Zr-H

~~			
	44.44		
	44.16	Theta:	88.23
	44.44		
	43.77		
	43.77		

$[(\eta^7 - C_7 H_7) Zr(\eta^5 - C_5 H_4 CH_3)]$

Centroid-Zr-H						
43.49						
44.29	Theta:	95.14				
45.56						
44.35						
60.16						
56.33						
48.23						
	43.49 44.29 45.56 44.35 60.16 56.33 48.23	43.49 44.29 Theta: 45.56 44.35 60.16 56.33 48.23				

С13-С12-Н

23.48			
26.16	Omega:	49.03	
23.91			

$\underline{[(\eta^7 - C_7 H_7) Zr(\eta^5 - C_5 H_4 Si(CH_3)_3)]}$

Centroid-Zr-H					
H8	43.59				
H9	43.61	Theta:	104.29		
H10	44.35				
H11	44.08				

Si(CH3)3	
1. CH3	85.09
	69.68
	75.93
2. CH3	63.31
	72.13
	80.66
3. CH3	37.79
	38.62
	49.05

Si-C12-Me			
1. CH3	47.84		
	47.37	Omega:	95.62
	27.17		
2. CH3	47.21		
	27.17		
	47.07		
3. CH3	48.38		
	27.57		
	46.16		

$\underline{[(\eta^7-C_7H_7)Zr(\eta^5-C_5H_4(allyl))]}$

Centroid-Zr-H				
H8	44.05			
H9	45.10	Theta:	105.95	
H10	44.89			
H11	43.53			
Allyl				
Н	57.70			
Н	41.75			
CH=CH2	87.30			
С13-С12-Н				
С-С-Н	25.79			
С-С-Н	27.35	Omega:	68.61	
CH=CH2	49.77			

$\underline{[(\eta^7-C_7H_7)Zr(\eta^5-Cp^{\prime\prime})]}$

Centroid-Zr-H			
Н9	44.05		
H11	44.80	Theta:	116.21
H12	43.99		
tBu on C8			
1. Me	78.94		
	69.13		
	61.54		
2. Me	75.79		
	66.71		
	57.39		
3. Me	45.59		
	34.24		
	32.57		
tBu on C10			
1. Me	78.75		
	69.15		
	60.84		
2. Me	77.31		
	68.66		
	59.21		
3. Me	46.02		
	34.13		
	33.39		

C(alpha)-C(ip	so)-H		
tBu on C8			
1. Me	49.52	Omega:	100.71
	49.49		
	24.69		
2. Me	49.75		
	49.28		
	24.68		
3. Me	51.53		
	51.21		
	26.58		

tBu on C10	
1. Me	49.71
	49.55
	24.78
2. Me	49.93
	48.96
	24.62
3. Me	51.68
	51.50
	26.79

$[(\eta^7 - C_7 H_7) Zr(\eta^5 - Cp^{(*)})]$

H10	44.10		
H12	43.33	Theta:	132.01
tBu on C8			
1. Me	83.49		
	76.24		
	74.37		
2. Me	61.53		
	57.84		
	43.09		
3. Me	49.44		
	46.57		
	33.21		
tBu on C9			
1. Me	79.34		
	69.16		
	62.96		
2. Me	75.04		
	67.13		
	56.49		
3. Me	45.68		
	34.71		
	32.40		
tBu on C11			
1. Me	79.76		
	68.94		

	62.01
2. Me	76.46
	68.50
	57.14
3. Me	46.49
	35.01
	33.38

C(alpha)-C(ipso)-	·H		
tBu on C8			
1. Me	48.27	Omega:	99.81
	47.75		
	23.44		
2. Me	50.04		
	49.58		
	25.26		
3. Me	49.65		
	47.12		
	23.98		
tBu on C9			
1. Me	47.28		
	46.88		
	22.35		
2. Me	50.39		
	49.03		
	25.08		
3. Me	51.28		
	50.34		
	26.15		
tBu on C11			
1. Me	50.48		
	48.16		
	24.59		
2. Me	50.46		
	48.79		
	24.85		
3. Me	51.30		
	51.03		
	26.36	 	

$\underline{[(\eta^7-C_7H_7)Zr(\eta^5-{}^4Cp)]}$

Centroid-Zr-H			
H12	44.1		
		Theta:	146.36
iPr on C8			
1. Me	76.88		
	67.24		
	59.04		
2. Me	45.38		
	33.93		
	32.45		
Н	59.1		
iPr on C9			
1. Me	82.08		
	71.21		
	69.74		
2. Me	45.71		
	40.09		
	29.85		
Н	53.21		
iPr on C10			
1. Me	83.39		
	73.03		
	72.49		
2. Me	47.67		
	42.67		
	31.49		
Н	53.35		
iDr on C11			
	70.45		
1. 1410	68 31		
	66.24		
2 M-	42.62		
2. Me	43.02		
	33.93 28.74		
	28.74		
Н	54.31		

iPr on C8 Omega: 85.89 1. Me 48.1 23.11 2. Me 51.13 50.9 26.17 1 27.35 H 27.35 26.17 H 27.35 26.17 H 27.35 27.35 $iPr on C9$ 1.1 22.07 2. Me 51.66 46.56 24.77 46.56 24.77 H 28.08 23.14 1. Me 49.53 45.89 2. Me 50.96 46.27 2. Me 50.96 46.27 24.2 1 27.91 iPr on C10 1.1 25.53 2. Me 50.96 46.27 24.2 41.77 25.53 2. Me 52.45 49.76 26.37 49.76 26.37 H 27.36 26.37	C(alpha)-C(ipso) -H		
1. Me 48.18 Omega: 85.89 48.1 23.11 2. Me 50.9 26.17	iPr on C8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1. Me	48.18	Omega:	85.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		48.1		
2. Me 51.13 50.9 26.17 H 27.35 iPr on C9 1. Me 47.39 46.43 22.07 2. Me 51.66 46.56 24.77 H 28.08 iPr on C10 1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 2. Me 51.36 46.27 24.2 H 27.91		23.11		
	2. Me	51.13		
$H = 27.35$ $\frac{26.17}{27.35}$ $\frac{197 \text{ on C9}}{1. \text{ Me}} = 47.39$ 46.43 22.07 $2. \text{ Me} = 51.66$ 46.56 24.77 $H = 28.08$ $\frac{23.14}{2.3.14}$ $2. \text{ Me} = 50.96$ 46.27 24.2 $H = 27.91$ $\frac{197 \text{ on C11}}{1. \text{ Me}} = 53.34$ 41.77 25.53 $2. \text{ Me} = 52.45$ 49.76 26.37 $H = 27.36$		50.9		
H 27.35 $iPr \text{ on C9}$ 1. Me 1. Me 47.39 46.43 22.07 2. Me 51.66 46.56 24.77 H 28.08 iPr on C10 1. 1. Me 49.53 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. 1. Me 41.77 25.53 2.5.53 2. Me 52.45 49.76 26.37 H 27.36		26.17		
iPr on C9 1. Me 47.39 46.43 22.07 2. Me 51.66 46.56 24.77 H 28.08 iPr on C10 1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	Н	27.35		
iPr on C9 1. Me 47.39 46.43 22.07 2. Me 51.66 46.56 24.77 H 28.08 iPr on C10 1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36				
1. Me47.3946.4322.072. Me51.6646.5624.77H28.08IPr on C101. Me49.5345.8923.142. Me50.9646.2724.2H27.91IPr on C111. Me53.3441.7725.532. Me52.4549.7626.37H27.36	iPr on C9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. Me	47.39		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		46.43		
2. Me 51.66 46.56 24.77 H 28.08 iPr on C10 1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36		22.07		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Me	51.66		
H = 24.77 $H = 28.08$ $iPr on C10$ $1. Me = 49.53$ 45.89 23.14 $2. Me = 50.96$ 46.27 24.2 $H = 27.91$ $iPr on C11$ $1. Me = 53.34$ 41.77 25.53 $2. Me = 52.45$ 49.76 26.37 $H = 27.36$		46.56		
H28.08iPr on C101. Me49.5345.8923.142. Me50.9646.2724.2H27.91iPr on C111. Me53.3441.7725.532. Me52.4549.7626.37H27.36		24.77		
iPr on C10 1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	Н	28.08		
1. Me 49.53 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36				
1. Me 49.33 45.89 23.14 2. Me 50.96 46.27 24.2 H 27.91 iPr on C11 1. Me 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	iPr on C10	10 50		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. Me	49.53		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		45.89		
2. Me 30.96 46.27 24.2 H 27.91 iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	2 M.	23.14		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2. Me	<u> </u>		
H = 27.91 $iPr on C11$ $1. Me = 53.34$ 41.77 25.53 $2. Me = 52.45$ 49.76 26.37 $H = 27.36$		46.27		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TT	24.2		
iPr on C11 1. Me 53.34 41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	п	27.91		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iPr on C11			
41.77 25.53 2. Me 52.45 49.76 26.37 H 27.36	1. Me	53.34		
25.53 2. Me 52.45 49.76 26.37 H 27.36		41.77		
2. Me 52.45 49.76 26.37 H 27.36		25.53		
49.76 26.37 H 27.36	2. Me	52.45		
26.37 H 27.36		49.76		
Н 27.36		26.37		
	Н	27.36		

$[(\eta^{7}-C_{7}H_{7})Zr(\eta^{5}-C_{5}(CH_{3})_{5})]$

Centroid-Zr-H				
Me on C5	59.33			
	59.33	Theta:	122.37	
	43.93			
Me on C6	61.59			
	59.44			
	44.28			
Me on C6B	61.59			
	59.44			
	44.28			
Me on C7	43.09			
	59.80			
	61.71			
Me on C7B	43.09			
	59.80			
	61.71			

C(alpha)-C(ipso)-H Me on C5 24.83 24.83 **Omega:** 51.20 26.42 24.45 Me on C6 26.43 26.44 Me on C7 24.60 25.53 26.50 24.45 Me on C6B 26.43 26.44 24.60 Me on C7B 25.53 26.50

$\underline{[(\eta^7-C_7H_7)Zr(\eta^5-^5Cp)]}$

Centroid-Zr-H	[
Pr on C2			
Me	83.84	Theta:	167.42
	71.31		
	71.31		
Me	46.03		
	40.70		
	28.56		
	53.49		
on C3			
Me	83.49		
	78.83		
	71.05		
Me	45.93		
	41.55		
	28.41		
	52.54		
r on C4			
Me	83.68		
	72.38		
	71.22		
Me	45.99		
	41.03		
	28.49		
	52.80		
r on CS	04.01		
Me	84.01		
	71.55		
	/1.42		
Me	46.32		
	40.45		
	28.88		
	53.68		
on C6			
Ме	83.52		
	72.89		
		C10	

	71.14
2. Me	45.93
	41.45
	28.40
Н	52.39

C(alpha)-C(ij	C(alpha)-C(ipso)-H				
iPr on C2					
1. Me	48.41	Omega:	88.5		
	48.09				
	20.92				
2. Me	54.34				
	47.67				
	24.58				
Н	29.98				
Pr on C3					
1. Me	49.02				
	47.42				
	20.98				
2. Me	54.21				
	47.34				
	24.42				
Н	30.00				
iPr on C4					
1. Me	48.97				
	47.99				
	21.18				
2. Me	54.07				
	47.74				
	24.39				
Н	29.93				
iPr on C5					
l. Me	48.31				
	48.28				
	20.95				
2. Me	53.97				
	48.21				
	24.45				

Н	29.95	
iPr on C6		
1. Me	48.96	
	47.68	
	21.05	
2. Me	54.12	
	47.70	
	24.43	
Н	29.98	

$[(\eta^{7}-C_{7}H_{7})Zr(\eta^{5}-C_{9}H_{7})]$

Centroid-Zr-H

H9	45.14		
H10	44.47	Theta:	102.56
H11	45.56		
H14	60.72		
H15	60.51		

$[(\eta^7 - C_7 H_7)Zr(\eta^5 - Ind^{(*)})]$ (1st molecule in the asymmetric unit)

43.54 Theta: 130. 61.52
4 61.52 Theta: 130.
61.52
115 <u>61.52</u>
Bu on C8
1. Me 46.45
38.54
31.2
2. Me 70.09
64.86
51.72
3. Me 82.64

	71.4
	68.19
tBu on C10	
1. Me	77.59
	68.52
	60.98
2. Me	74.54
	65.16
	56.07
3. Me	43.72
	33.35
	30.61

C(alpha)-C(ipso)-H

tBu on C8			
1. Me	51.83	Omega:	101.26
	50.66		
	26.51		
2. Me	48.87		
	47.38		
	23.33		
3. Me	51.34		
	48.57		
	25.31		
tBu on C10			
1. Me	52.52		
	51.58		
	27.31		
2. Me	<u>50.00</u>		
	49.57		
	24.98		
3. Me	49.21		
	46.06		
	23.01		

$[(\eta^7 - C_7 H_7)]$)Zr(ŋ	⁵ -Ind'')] (2	^{1d} molecule	in the	asyr	mmetric	unit)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Theta: 13 7, $61.9863.11on C8'16$ 44.41 33.83 31.60 16 74.86 65.89 56.49 16 77.67 67.96 60.86 on C10'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$
on C8' 44.41 33.83 31.60 4e 74.86 65.89 56.49 4e 77.67 67.96 60.86 on C10'
on C8' 44.41 33.83 31.60 1e 74.86 65.89 56.49 1e 77.67 67.96 60.86 on C10'
on C8' 44.41 33.83 31.60 1e 74.86 65.89 56.49 56.49 1e 77.67 67.96 60.86 on C10'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
33.83 31.60 ie 74.86 65.89 56.49 ie 77.67 67.96 60.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
le 74.86 65.89 56.49 le 77.67 67.96 60.86
65.89 56.49 le 77.67 67.96 60.86
56.49 ie 77.67 67.96 60.86
le 77.67 67.96 60.86 on C10'
67.96 60.86 on C10'
60.86 on C10'
on C10'
on C10'
le <u>84.03</u>
73.86
72.86
le <u>65.98</u>
60.02
46.56
le <u>62.45</u>
43.09
62.45

C(alpha)-C(ipso)	-H			
tBu on C8'				
1. Me	51.43	Omega:	100.19	
	51.37			
	29.60			
2. Me	49.82			
	49.54			
	24.87			
3. Me	48.50			
	47.27			

	23.08
tBu on C10'	
1. Me	51.67
	49.62
	26.01
2. Me	50.43
	49.02
	24.89
3. Me	49.18
	48.22
	23.93

$[(\eta^7 - C_7 H_7) Zr(\eta^5 - Ind^{cHexyl})] (1^{st} molecule in the asymmetric unit)$

roid-Zr-H			
-19	43.68		
		Theta:	130.96
H14	61.94		
H15	61.10		
cHexyl on C8			
СН	61.69		
CH2	79.10		
	60.84		
CH2	79.07		
	78.24		
CH2 middle	65.62		
	57.71		
CH2	58.47		
	48.08		
CH2	37.30		
	35.92		
cHexyl on C10			
СН	60.47		
CH2	81.57		
	63.78		
CH2	80.07		

	79.01
CH2 middle	65.87
	58.98
CH2	57.38
	47.65
CH2	36.88
	36.05

C(alpha)-C(ipso)-H

cHexyl on C8	
CH 27.96 Omega:	
CH2 49.11	
48.76	
CH2 30.23	
18.31	
CH2 middle 29.82	
13.24	
CH2 31.05	
19.15	
CH2 49.97	
49.34	
cHexyl on C10	
СН 27.97	
CH2 49.55	
48.42	
CH2 29.99	
18.83	
CH2 middle 28.77	
12.05	
CH2 30.75	
19.51	
CH2 50.10	
40.21	

$[(\eta^7 - C_7 \underline{H}_7) Zr(\eta^5 - Ind^{cHexyl})] (2^{nd} molecule in the asymmetric unit)$

Centroid-Zr-H			
Н9'	42.49		
		Theta:	131.70
H14'	61.25		

H15'	61.17
cHexyl on C8'	
СН	61.47
CH2	75.16
	56.65
CH2	<mark>76.00</mark>
	73.53
CH2 middle	62.30
	53.66
CH2	57.44
	46.18
CH2	37.54
	23.52
cHexyl on C10'	
СН	47.52
CH2	81.51
	84.11
CH2	88.32
	73.70
CH2 middle	77.61
	73.59
CH2	53.93
	57.44
CH2	50.13
	39.61

C(alpha)-C(ipso)-H

cHexyl on C8'			
СН	<mark>27.92</mark>	Omega:	84.20
CH2	48.59		
	<u>50.07</u>		
CH2	19.93		
	31.25		
CH2 middle	13.26		
	28.93		
CH2	29.68		
	28.23		
CH2	48.60		
	48.12		

cHexyl on C10'	
СН	27.76
CH2	49.09
	48.90
CH2	29.85
	29.55
CH2 middle	11.50
	28.04
CH2	18.94
	29.20
CH2	47.76
	49.60

3. Comparison between cone angles Θ based on calculated (DFT) and experimental structures (X-ray) for $[(\eta^7-C_7H_7)Zr(\eta^5-{}^4Cp)]$

Comparison of cone angles for $[(\eta^7 - C_7 H_7)Zr(\eta^5 - {}^4Cp)]$ based on calculated and experimental structures. Only the conformers without methyl-methyl contacts are compared. Distances are given in Å, angles are given in °.

	Experimental data	C _s symmetry	C _s symmetry	$C_{2\nu}$ symmetry
	(X-ray)	(as exp.)		
Centroid-Zr	2.207	2.218	2.225	2.226
Centroid-Zr-H (for H)	44.10	46.41	46.15	45.82
Centroid-Zr-H (for iPr)	79.45	83.81	82.87	82.69
Centroid-Zr-H (for iPr)	82.08	84.87	84.95	83.85
Centroid-Zr-H (for iPr)	83.39	84.15	83.76	83.84
Centroid-Zr-H (for iPr)	76.88	77.25	83.61	82.61
Cone angle	146.4	150.60	152.54	151.52

4. References

[1] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,

F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[2] X. Cao and M. Dolg, J. Chem. Phys. 2001, 115, 7348.

[3] (a) A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, *Mol. Phys.* 1993, *80*, 1431; (b) M. Kaupp, P. v. R. Schleyer, H. Stoll, H. Preuss, *J. Chem. Phys.* 1991, *94*, 1360; (c) M. Dolg, H. Stoll, H. Preuss, R. M. Pitzer, *J. Phys. Chem.* 1993, *97*, 5852.