Electronic Supporting Information (ESI)

Dynamic porous coordination polymer based on 2D stacked layers exhibiting high sorption selectivity for CO$_2$

Bo Liu, Lei Hou, Yao-Yu Wang,* Hui Miao, Li Bao and Qi-Zhen Shi

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi’an 710069 (P. R. China).

Email: wyaoyu@nwu.edu.cn, Tel: 86 29 88302604
Table of Content

1. Figure. S1 IR spectrum for {Ni(dcpy)(bipy)0.5(H2O)}·1.5H2O (1)

2. Figure. S2 PXRD patterns for 1 obtained under different synthesis methods; a) simulated from the single crystal data; b) as-synthesized 1 via conventional solvothermal; c) as-synthesized 1 via conventional hydrothermal; d) as-synthesized 1 via rapid microwave method.

3. Figure. S3 The ball-and-stick drawing of the asymmetric unit in 1, the hydrogen atoms and solvent molecules are omitted, and the atoms in the asymmetric unit are labeled. Symmetry codes: 1-x, 1-y, -z.

4. Figure. S4 View of the 1D chain structure linked by Ni²⁺ centers and dcpy²⁻ ligands in 1 along the crystallographic c-axis.

5. Figure. S5 View of the 2D layer of 1: a) along the crystallographic a-axis; b) along the crystallographic b-axis; c) along the crystallographic (101)-axis.

6. Figure. S6 View of the 2D stacked layers of 1: a) along the crystallographic a-axis; b) along the crystallographic b-axis.

7. Figure. S7 TGA plots of the as-synthesized and desolvated samples of 1.

8. Figure. S8 PXRD patterns for 1 in different state; a) simulated from the single crystal data; b) synthesized powder samples; c) dehydrated samples 1a; d) dehydrated samples 1b; e) dehydrated samples 1c; f) dehydrated samples 1d; g) rehydrated samples.

9. Figure. S9 Sorption isotherms of CO₂ measured at 195 K (a) and N₂ measured at 77 K (b).

10. Figure. S10 Sorption isotherms of CO₂ measured at 273 K and 293 K.

11. Figure. S11 Sorption isotherms of N₂ measured at 77K at different activation temperatures.

12. Figure. S12 PXRD patterns for 1a, 1b and 1c at low angles (2θ = 5–25°).
Figure S1 IR spectrum for \([\text{Ni(dcpy)(bipy)}_{0.5}(\text{H}_2\text{O}) \cdot 1.5\text{H}_2\text{O}] \) (1)

Figure S2 PXRD patterns for 1 obtained under different synthesis methods; a) simulated from the single crystal data; b) as-synthesized 1 via conventional solvothermal; c) as-synthesized 1 via conventional hydrothermal; d) as-synthesized 1 via rapid microwave method.
Figure. S3 The ball-and-stick drawing of the asymmetric unit in 1, the hydrogen atoms and solvent molecules are omitted, and the atoms in the asymmetric unit are labeled. **Symmetry codes:**

*: 1/2-x, 1/2-y, -z.

Figure. S4 View of the 1D chain structure linked by Ni$^{2+}$ centers and dcpy$^{2-}$ ligands in 1 along the crystallographic c-axis.
Figure. S5 View of the 2D layer of 1: a) along the crystallographic a-axis; b) along the crystallographic b-axis; c) along the crystallographic (101)-axis.

Figure. S6 View of the 2D stacked layers of 1: a) along the crystallographic a-axis; b) along the crystallographic b-axis.
Figure S7 TGA plots of the as-synthesized and desolvated samples of 1.

Figure S8 PXRD patterns for 1 in different state; a) simulated from the single crystal data; b) synthesized powder samples; c) dehydrated samples 1a; d) dehydrated samples 1b; e) dehydrated samples 1c; f) dehydrated samples 1d; g) rehydrated samples.
Figure. S9 Sorption isotherms of CO$_2$ measured at 195 K a) and N$_2$ measured at 77 K b).

Figure. S10 Sorption isotherms of CO$_2$ measured at 273 K and 293 K.
Figure. S11 Sorption isotherms of N₂ measured at 77K at different activation temperatures.

Figure. S12 PXRD patterns for 1a, 1b and 1c at low angles (2θ = 5–25°).