Phosphino Imidazoles and Imidazolium Salts

for Suzuki C-C Coupling Reactions

Bianca Milde, Dieter Schaarschmidt, Tobias Rüffer, and Heinrich Lang

Chemnitz University of Technology, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany.

Electronic Supplementary Information

- Experimental Section -

Table of Contents

1	Gene 1.1	eral synthesis procedure for phosphines 11a – f Synthesis of 1-(4-bromophenyl))-2-(diphenylphosphino)-1 <i>H</i> -imidazole (11a)	4 4
	1.2	Synthesis of 1-(4-bromophenyl))-2-(dicyclohexylphosphino)-1H-imidazole	
		(11b)	5
	1.3	Synthesis of 1-(4-bromophenyl))-2-(di-2-furylphosphino)-1 <i>H</i> -imidazole (11c)	6
	1.4	Synthesis of 1-(4-iodophenyl)-2-(diphenylphosphino)-4,5-di-methyl-1 <i>H</i> -	
		imidazole (11d)	6
	1.5	Synthesis of 1-(4-iodophenyl))-2-(dicyclohexylphosphino)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11e)	7
	1.6	Synthesis of 1-(4-iodophenyl))-2-(di-2-furylphosphino)-4,5-dimethyl-1H-	
		imidazole (11f)	8
	1.7	Synthesis of 1-(4-ferrocenylphenyl))-2-(diphenyl-phosphino)-1 <i>H</i> -imidazole	
		(11g)	9
	1.8	Synthesis of 1-(4-(ethynylferrocenyl)phenyl))-2-(diphenyl-phosphino)-1H-	
		imidazole (11h)	9
	1.9	Synthesis of 1-(4-(1,1'-biphenyl))-2-(diphenylphosphino)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11i)	10
	1.10	Synthesis of 1-(4-(1,1'-biphenyl))-2-(dicyclohexylphosphino)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11 j)	11
	1.11	Synthesis of 1-(4-(1,1'-biphenyl))-2-(di-2-furyl-phosphino)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11k)	12
2	Gene	eral procedure for the synthesis of seleno phosphines 11a-Se – f-Se	13
	2.1	Synthesis of 1-(4-bromophenyl))-2-(diphenylphosphino-selenide)-1H-	
		imidazole (11a-Se)	13
	2.2	Synthesis of 1-(4-bromophenyl))-2-(dicyclohexylphosphino-selenide)-1H-	
		imidazole (11b-Se)	14

	2.3	Synthesis of 1-(4-bromophenyl))-2-(di-2-furylphosphino-selenide)-1H-	
		imidazole (11c-Se)	15
	2.4	Synthesis of 1-(4-iodophenyl)-2-(diphenylphosphine-selenide)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11d-Se)	15
	2.5	Synthesis of 1-(4-iodophenyl))-2-(dicyclohexylphosphino-selenide)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11e-Se)	16
	2.6	Synthesis of 1-(4-iodophenyl))-2-(di-2-furylphosphino-selenide)-4,5-	
		dimethyl-1 <i>H</i> -imidazole (11f-Se)	17
3	Gen	eral procedure for the synthesis of imidazolium salts 16a – 16d	18
	3.1	Synthesis of 1-(4-bromophenyl)-3- ^{<i>n</i>} butyl-1 <i>H</i> -imidazolium iodide (16a)	18
	3.2	Synthesis of 1-(4-bromophenyl)-3- ^{<i>n</i>} octyl-1 <i>H</i> -imidazolium hexafluoro-	10
	3.3	Synthesis of 1-(4-iodophenyl)-3- ^{<i>n</i>} octyl-4,5-dimethyl-1 <i>H</i> -imidazolium iodide	19
		(16c)	20
	3.4	Synthesis of 1-phenyl- 3^{-n} octyl- $4,5$ -dimethyl- $1H$ -imidazolium iodide (16d)	20
4	INIVII	x spectra of 30	22
5	NMI	R spectra of 11d	23
6	NMR spectra of 11d-Se		24
7	NMR spectra of 16c		
8	NMI	R spectra of 17a	27
9	NMI	R spectra of 20	28

1 General synthesis procedure for phosphines 11a - f. To 0.5 g of 3a (2.24 mmol), 3b (1.68 mmol), 5 (1.52 mmol), 7 (1.42 mmol) or 9 (2.01 mmol) dissolved in in dry diethyl ether (3a, 5, 7, 9, 40 mL) or tetrahydrofuran (3b, 40 mL) one eq of a 2.5 M solution of *n*-BuLi (3a, 5, 7, 9) or a 2.0 M solution of lithium di-*i*-propylamide (3b) was added dropwise at -30 °C. After warming the solution to ambient temperature, it was again cooled to -30 °C and one eq of the chlorophosphines 10a - c was added dropwise. The reaction mixture was stirred at ambient temperature for 2 h and the solvent was removed in vacuum. The crude product was purified by column chromatography on Silica or alumina and dried in vacuum.

1.1 1-(4-bromophenyl))-2-(diphenylphosphino)-1*H*-imidazole **Synthesis** of (11a). Following the general procedure described above, 3a (0.5 g, 2.24 mmol) was reacted with n-BuLi (0.90 mL, 2.25 mmol) and chlorodiphenylphosphine (10a, 0.40 mL, 2.23 mmol). The residue was purified by column chromatography on Silica (column size: 12×3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 1:1, v:v) as eluent. Phosphine **11a** was obtained as a colourless solid. Yield: 0.55 g (1.35 mmol, 60 % based on 3a). Anal. Calcd. for C₂₁H₁₆BrN₂P (407.24 g/mol): C, 61.93; H, 3.96; N, 6.88. Found: C, 61.85; H, 3.98; N, 6.87. Mp.: 170 °C. IR (KBr, \tilde{v} /cm⁻¹): 1432 (m, P-C), 1480 (s, N=C), 1582 (w, C=C), 3052/3138 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 7.09 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.1$ Hz, 2 H, H^o/C₆H₄), 7.23 $(dd, {}^{3}J_{HH} = 1.2 Hz, {}^{4}J_{HP} = 2.0 Hz, 1 H, H^{4}/C_{3}H_{2}N_{2}), 7.32 - 7.35 (m, 6 H, H^{m,p}/C_{6}H_{5}), 7.38 (d, H)$ ${}^{3}J_{\rm HH} = 1.2$ Hz, H ${}^{5}/C_{3}H_{2}N_{2}$), 7.41 – 7.45 (m, 4 H, H ${}^{o}/C_{6}H_{5}$), 7.52 (dpt, ${}^{3}J_{\rm HH} = 8.6$ Hz, ${}^{4}J_{\rm HH} =$ 2.9 Hz, 2 H, H^m/C_6H_4). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 122.6 (s, C^p/C_6H_4), 123.7 (s, $C^{4}/C_{3}H_{2}N_{2}$), 128.0 (d, ${}^{4}J_{CP} = 3.7$ Hz, $C^{o}/C_{6}H_{4}$), 128.6 (d, ${}^{3}J_{CP} = 7.5$ Hz, $C^{m}/C_{6}H_{5}$), 129.3 (s, $C^{p}/C_{6}H_{5}$, 131.7 (d, ${}^{3}J_{CP} = 1.6$ Hz, $C^{5}/C_{3}H_{2}N_{2}$), 132.4 (s, $C^{m}/C_{6}H_{4}$), 134.0 (d, ${}^{2}J_{CP} = 20.8$ Hz, $C^{o}/C_{6}H_{5}$, 135.3 (d, ${}^{1}J_{CP} = 4.8$ Hz, $C^{i}/C_{6}H_{5}$), 137.1 (d, ${}^{3}J_{CP} = 1.8$ Hz, $C^{i}/C_{6}H_{4}$), 147.0 (d, ${}^{1}J_{CP} =$ 7.4 Hz, $C^2/C_3H_2N_2$). ³¹P{¹H} NMR (202.5 MHz, CDCl₃, δ): -29.4 (s). HRMS (ESI-TOF) C₂₁H₁₆BrN₂P [M+nH]⁺ *m/z*: calcd.: 407.0307, found: 407.0255.

1.2 Synthesis of 1-(4-bromophenyl))-2-(dicyclohexylphosphino)-1*H*-imidazole (11b). Using the general procedure described above, **3a** (0.5 g, 2.24 mmol) was reacted with *n*-BuLi (0.90 mL, 2.25 mmol) and chlorodicyclohexylphosphine (10b, 0.50 mL, 2.26 mmol). The residue was purified by column chromatography on Silica (column size: 12×3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 1:1, v:v) as eluent. Phosphine **11b** was obtained as a colourless solid. Yield: 0.46 g (1.10 mmol, 49 % based on 3a). Anal. Calcd. for C₂₁H₂₈BrN₂P (419.34 g/mol): C, 60.15; H, 6.73; N, 6.68. Found: C, 60.25; H, 6.62; N, 6.66. Mp.: 139 °C. IR (KBr, *v*/cm⁻¹): 1445 (m, P-C), 1481/1501 (m, N=C), 1586 (w, C=C), 2847/2922 (s, C-H), 3097/3150 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 0.95 – 1.04 (m, 2 H, C₆H₁₁), 1.08 – 1.30 (m, 8 H, C_6H_{11}), 1.55 – 1.57 (m, 2 H, C_6H_{11}), 1.61 – 1.72 (m, 8 H, C_6H_{11}), 2.08 – 2.13 (m, 2 H, $H^{1}/C_{6}H_{11}$), 7.13 (dd, ${}^{3}J_{HH} = 1.1$ Hz, ${}^{4}J_{HP} = 2.3$ Hz, 1 H, $H^{4}/C_{3}H_{2}N_{2}$), 7.18 (dpt, ${}^{3}J_{HH} =$ 8.6 Hz, ${}^{4}J_{\text{HH}} = 2.0$ Hz, ${}^{5}J_{\text{HP}} = 1.0$ Hz, 2 H, H ${}^{o}/\text{C}_{6}H_{4}$), 7.33 (d, ${}^{3}J_{\text{HH}} = 1.0$ Hz, 1 H, H ${}^{5}/\text{C}_{3}H_{2}\text{N}_{2}$), 7.57 (dpt, ${}^{3}J_{\text{HH}} = 8.6 \text{ Hz}$, ${}^{4}J_{\text{HH}} = 1.9 \text{ Hz}$, $H^{m}/C_{6}H_{4}$). ${}^{13}C\{{}^{1}\text{H}\}$ NMR (125.81 MHz, CDCl₃, δ): 26.5 (s, C_6H_{11}), 26.9 (d, $J_{CP} = 8.1$ Hz, C_6H_{11}), 27.1 (d, $J_{CP} = 12.7$ Hz, C_6H_{11}), 29.3 (d, J_{CP} = 12.7 Hz, C_6H_{11}), 29. 7.1 Hz, C_6H_{11}), 30.4 (d, $J_{CP} = 16.1$ Hz, C_6H_{11}), 34.4 (d, ${}^{1}J_{CP} = 7.7$ Hz, C^{1}/C_6H_{11}), 122.3 (s, $C^{p}/C_{6}H_{4}$, 123.1 (s, $C^{4}/C_{3}H_{2}N_{2}$), 128.9 (d, ${}^{4}J_{CP} = 4.3$ Hz, $C^{o}/C_{6}H_{4}$), 130.9 (s, $C^{5}/C_{3}H_{2}N_{2}$), 132.2 (s, C^m/C_6H_4), 137.6 (d, ${}^{3}J_{CP} = 1.4$ Hz, C^i/C_6H_4), 147.4 (d, ${}^{1}J_{CP} = 19.9$ Hz, $C^2/C_3H_2N_2$). ³¹P{¹H} NMR (202.5 MHz, CDCl₃, δ): -24.4 (s). HRMS (ESI-TOF) C₂₁H₂₈BrN₂P [M+nH]⁺ *m/z*: calcd.: 419.1246, found: 419.1224.

1.3 Synthesis of 1-(4-bromophenyl))-2-(di-2-furylphosphino)-1*H*-imidazole (11c).

Based on the general procedure described above, **3a** (0.5 g, 2.24 mmol) was reacted with *n*-BuLi (0.90 mL, 2.25 mmol) and chlorodi-2-furylphosphine (10c, 0.45 g, 2.24 mmol). The residue was purified by column chromatography on Silica (column size: 12×3.5 cm) using diethyl ether as eluent. Phosphine 11c was obtained as colourless solid. Yield: 0.45 g (1.16 mmol, 52 % based on 3a). Anal. Calcd. for C₁₇H₁₂BrN₂O₂P (387.17 g/mol): C, 52.74; H, 3.12; N, 7.24. Found: C, 52.83; H, 3.09; N, 7.24. Mp.: 146 °C. IR (KBr, *v*/cm⁻¹): 1007 (s, C-O), 1449 (m, P-C), 1483/1498 (m, N=C), 1546 (w, C=C), 3073/3094/3112/3137 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 6.38 (dt ⁴*J*_{HP} = 1.6 Hz, ³*J*_{HH} = 3.3 Hz, ³*J*_{HH} = 1.8 Hz, 2 H, $H^{4}/C_{4}H_{3}O$, 6.77 (m, 2 H, $H^{3}/C_{4}H_{3}O$), 7.07 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, ${}^{5}J_{HP} = 1.1$ Hz, 2 H, H^o/C₆H₄), 7.14 (pt, ${}^{3}J_{HH} = 1.4$ Hz, H⁴/C₃H₂N₂), 7.33 (d, ${}^{3}J_{HH} = 1.1$ Hz, H⁵/C₃H₂N₂), 7.51 $(dpt, {}^{3}J_{HH} = 8.6 \text{ Hz}, {}^{4}J_{HH} = 2.0 \text{ Hz}, \text{H}^{m}/\text{C}_{6}H_{4}), 7.65 \text{ (m, 2 H, H}^{5}/\text{C}_{4}H_{3}\text{O}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR}$ (125.81 MHz, CDCl₃, δ): 111.0 (d, ${}^{3}J_{CP} = 6.6$ Hz, $C^{4}/C_{4}H_{3}O$), 122.5 (d, ${}^{2}J_{CP} = 26.3$ Hz, $C^{3}/C_{4}H_{3}O$, 122.7 (s, $C^{p}/C_{6}H_{4}$), 123.8 (s, $C^{4}/C_{3}H_{2}N_{2}$), 127.8 (d, ${}^{4}J_{CP} = 3.5$ Hz, $C^{o}/C_{6}H_{4}$), 131.7 (d, ${}^{3}J_{CP} = 3.5 \text{ Hz}, \text{ C}^{5}/C_{3}\text{H}_{2}\text{N}_{2}$), 132.4 (s, $\text{C}^{m}/C_{6}\text{H}_{4}$), 136.9 (m, $\text{C}^{i}/C_{6}\text{H}_{4}$), 143.7 (d, ${}^{1}J_{CP} = 7.8$ Hz, C^2/C_4H_3O), 147.6 (m, $C^2/C_3H_2N_2$), 148.0 (d, ${}^4J_{CP} = 2.9$ Hz, C^5/C_4H_3O). ${}^{31}P{}^{1}H{}$ NMR $(202.5 \text{ MHz}, \text{CDCl}_3, \delta)$: -73.0 (s). HRMS (ESI-TOF) $C_{17}H_{12}\text{BrN}_2O_2P [M+nH]^+ m/z$: calcd.: 386.9893, found: 386.9882; $[M+nNa]^+ m/z$: calcd.: 408.9712, found: 408.9698.

1.4 Synthesis of 1-(4-iodophenyl)-2-(diphenylphosphino)-4,5-dimethyl-1*H*-imidazole (11d). Compound 3b (0.5 g, 1.68 mmol) was reacted with lithium di-*iso*-propylamide (0.84 mL, 1.68 mmol) and chlorodiphenylphosphine (10a, 0.31 mL, 1.73 mmol) as described earlier. The crude product was purified by column chromatography on Silica (column size: 12 \times 3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 1:1, *v*:*v*) as eluent. Phosphine 11d was obtained as a colourless solid. Yield: 0.53 g (1.10 mmol, 65 % based on 3b). Anal. Calcd.

for C₂₃H₂₀IN₂P (482.30 g/mol): C, 57.28; H, 4.18; N, 5.81. Found: C, 56.86; H, 4.36; N, 5.49. Mp.: 189 °C. IR (KBr, \tilde{v} /cm⁻¹): 1433 (m, P-C), 1479/1487 (s, N=C), 1581 (w, C=C), 2913 (w, C-H), 3048 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.96 (s, 3 H, CH₃), 2.25 (s, 3 H, CH₃), 6.77 (dpt, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 1.9 Hz, ⁵J_{HP} = 0.9 Hz, 2 H, H°/C₆H₄), 7.28 – 7.30 (m, 6 H, H^{*m.p.*}/C₆H₅), 7.40 – 7.44 (m, 4 H, H°/C₆H₅), 7.70 (dpt, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 1.9 Hz, H^{*m.p.*}/C₆H₄), 13C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.7 (s, CH₃), 13.2 (s, CH₃), 94.5 (s, C^{*p*}/C₆H₄), 127.1 (s, C⁴/C₃N₂), 128.5 (d, ³J_{CP} = 7.6 Hz, C^{*m*}/C₆H₅), 128.9 (s, C^{*p*}/C₆H₅), 130.1 (d, ⁴J_{CP} = 2.7 Hz, C^{*o*}/C₆H₄), 133.8 (d, ²J_{CP} = 20.1 Hz, C^{*o*}/C₆H₅), 136.1 (d, ¹J_{CP} = 5.4 Hz, C^{*i*}/C₆H₄), 143.9 (d, ¹J_{CP} = 2.6 Hz, C²/(CH₃)₂C₃N₂). ³¹P{¹H} NMR (202.5 MHz, CDCl₃, δ): -29.1 (s). HRMS (ESI-TOF) C₂₃H₂₀IN₂P [M+nH]⁺ *m/z*: calcd.: 483.0482, found: 483.0479.

1-(4-iodophenyl))-2-(dicyclohexylphosphino)-4,5-dimethyl-1H-1.5 **Synthesis** of imidazole (11e). Compound 3b (0.5 g, 1.68 mmol) was reacted with lithium di-isopropylamide (0.84 mL, 1.68 mmol) and chlorodicyclohexylphosphine (10b, 0.37 mL, 1.68 mmol) as described earlier. The residue was purified by column chromatography on Silica (column size: 12×3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 1:1, *v*:*v*) as eluent. Molecule 11e was obtained as a colourless solid. Yield: 0.46 g (0.93 mmol, 55 % based on **3b**). Anal. Calcd. for C₂₃H₃₂IN₂P (494.39 g/mol): C, 55.88; H, 6.52; N, 5.67. Found: C, 56.19; H, 6.62; N, 5.65. Mp.: 181 °C. IR (KBr, *v*/cm⁻¹): 1435 (m, P-C), 1459 (s, N=C), 1582 (w, C=C), 2855/2914/2936 (w, C-H), 3049/3070 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 0.97 - 1.06 (m, 2 H, C₆H₁₁), 1.09 - 1.30 (m, 8 H, C₆H₁₁), 1.56 - 1.58 (m, 2 H, C₆H₁₁), 1.61 - 1.581.72 (m, 8 H, C₆ H_{11}), 1.93 (s, 3 H, C H_3), 2.07 – 2.12 (m, 2 H, H¹/C₆ H_{11}), 2.25 (s, 3 H, C H_3), 6.85 (dpt, ${}^{3}J_{\text{HH}} = 8.5$ Hz, ${}^{4}J_{\text{HH}} = 1.9$ Hz, ${}^{5}J_{\text{HP}} = 0.7$ Hz, 2 H, $\mathrm{H}^{o}/\mathrm{C}_{6}H_{4}$), 7.78 (dpt, ${}^{3}J_{\text{HH}} = 8.5$ Hz, ${}^{4}J_{\text{HH}} = 1.9$ Hz, 2 H, $H^{m}/C_{6}H_{4}$). ${}^{13}C\{{}^{1}\text{H}\}$ NMR (125.81 MHz, CDCl₃, δ): 9.8 (s, CH₃), 13.1

(s, CH₃), 26.5 (s, $C_{6}H_{11}$), 27.0 (d, $J_{CP} = 8.7$ Hz, $C_{6}H_{11}$), 27.1 (d, $J_{CP} = 13.5$ Hz, $C_{6}H_{11}$), 29.5 (d, $J_{CP} = 7.7$ Hz, $C_{6}H_{11}$), 30.6 (d, $J_{CP} = 16.6$ Hz, $C_{6}H_{11}$), 34.5 (d, ${}^{1}J_{CP} = 7.3$ Hz, $C^{1}/C_{6}H_{11}$), 94.3 (s, $C^{p}/C_{6}H_{4}$), 125.8 (s, $C^{4}/C_{3}N_{2}$), 130.8 (d, ${}^{4}J_{CP} = 2.7$ Hz, $C^{o}/C_{6}H_{4}$), 135.8 (s, $C^{5}/C_{3}N_{2}$), 137.7 (s, $C^{i}/C_{6}H_{4}$), 138.3 (s, $C^{m}/C_{6}H_{4}$), 144.9 (d, ${}^{1}J_{CP} = 13.4$ Hz, $C^{2}/C_{3}N_{2}$). ${}^{31}P\{{}^{1}H\}$ NMR (202.5 MHz, CDCl₃, δ): -23.6 (s). HRMS (ESI-TOF) C₂₃H₃₂IN₂P [M+nH]⁺ *m/z*: calcd.: 495.1421, found: 495.1380.

Synthesis of 1-(4-iodophenyl))-2-(di-2-furylphosphino)-4,5-dimethyl-1H-imidazole 1.6 (11f). Following the synthesis methodology described above, 3b (0.5 g, 1.68 mmol) was reacted with lithium di-i-propylamide (0.84 mL, 1.68 mmol) and chlorodi-2-furylphosphine (10c, 0.37 mL, 1.68 mmol). The crude product was purified by column chromatography on Silica (column size: 12×3.5 cm) using diethyl ether as eluent. Product **11f** was obtained as colourless solid. Yield: 0.52 g (1.13 mmol, 55 % based on 3b). Anal. Calcd. for C₁₉H₁₆IN₂O₂P (462.22 g/mol): C, 49.37; H, 3.49; N, 6.06. Found: C, 49.37; H, 3.65; N, 5.83. Mp.: 132 °C. IR (KBr, *v*/cm⁻¹): 1006 (s, C-O), 1454 (m, P-C), 1488 (s, N=C), 1550/1589 (w, C=C), 2914 (w, C-H), 3031/3045/3077 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.92 (s, 3 H, CH₃), 2.23 (s, 3 H, CH₃), 6.35 (dt ${}^{4}J_{HP}$ = 1.6 Hz, ${}^{3}J_{HH}$ = 3.3 Hz, ${}^{3}J_{HH}$ = 1.7 Hz, 2 H, $H^{4}/C_{4}H_{3}O$, 6.71 (m, 2 H, $H^{3}/C_{4}H_{3}O$), 6.80 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, ${}^{5}J_{HP} = 0.9$ Hz, 2 H, H^o/C₆H₄), 7.62 (m, 2 H, H⁵/C₄H₃O), 7.72 (dpt, ${}^{3}J_{HH} = 8.5$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, H^m/C₆H₄). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.5 (s, CH₃), 13.2 (s, CH₃), 94.4 (s, C^{*p*}/C₆H₄), 111.0 (d, ${}^{3}J_{CP} = 6.9$ Hz, $C^{4}/C_{4}H_{3}O$), 121.9 (d, ${}^{2}J_{CP} = 26.4$ Hz, $C^{3}/C_{4}H_{3}O$), 127.4 (s, $C^{4}/C_{3}N_{2}$), 129.8 (d, ${}^{4}J_{CP} = 2.5$ Hz, $C^{o}/C_{6}H_{4}$), 136.7 (d, ${}^{3}J_{CP} = 4.3$ Hz, $C^{5}/C_{3}N_{2}$), 136.8 (d, ${}^{3}J_{CP} = 1.3$ Hz, $C^{i}/C_{6}H_{4}$, 138.4 (s, $C^{m}/C_{6}H_{4}$), 140.4 (d, ${}^{1}J_{CP} = 12.1$ Hz, $C^{2}/C_{3}N_{2}$), 147.7 (d, ${}^{4}J_{CP} = 2.7$ Hz, $C^{5}/C_{4}H_{3}O$), 148.1 (d, ${}^{1}J_{CP} = 3.0$ Hz, $C^{2}/C_{4}H_{3}O$). ${}^{31}P\{{}^{1}H\}$ NMR (202.5 MHz, CDCl₃, δ): -72.9 (s). HRMS (ESI-TOF) $C_{19}H_{16}IN_2O_2P [M+nH]^+ m/z$: calcd.: 463.0066, found: 463.0067.

Synthesis of 1-(4-ferrocenylphenyl))-2-(diphenylphosphino)-1H-imidazole (11g). 1.7 Molecule 5 (0.5 g, 1.52 mmol) was reacted with n-BuLi (0.61 mL, 1.53 mmol) and chlorodiphenylphosphine (10a, 0.28 mL, 1.56 mmol) as described above. The crude product was purified by column chromatography on Silica (column size: 12×3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 2:5, v:v) as eluent. The title compound **11g** was obtained as an orange solid. Yield: 0.49 g (0.96 mmol, 63 % based on 5). Anal. Calcd. for C₃₁H₂₅FeN₂P (512.36 g/mol): C, 72.67; H, 4.92; N, 5.47. Found: C, 72.24; H, 5.25; N, 5.39. Mp.: 171 °C. IR (KBr, *v*/cm⁻¹): 1431 (m, P-C), 1458/1475 (m, N=C), 1531/1537 (m, C=C), 2852/2923/2957 (w, C-H), 3043/3082 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 4.05 (s, 5 H, C₅H₅), 4.35 (pt, ${}^{3}J_{HH} = 1.8$ Hz, C₅H₄), 4.64 (pt, ${}^{3}J_{HH} = 1.8$ Hz, C₅H₄), 7.13 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, ${}^{5}J_{HP} = 1.3$ Hz, 2 H, H ${}^{o}/C_{6}H_{4}$), 7.28 (dd, ${}^{3}J_{HH} = 1.2$ Hz, ${}^{4}J_{HP} = 2.0$ Hz, 1 H, H ${}^{5}/C_{3}H_{2}N_{2}$), 7.33 - 7.44 (m, 6 H, $H^{m,p}/C_6H_5$), 7.39 (d, ${}^{3}J_{HH} = 1.1$ Hz, $H^{4}/C_3H_2N_2$), 7.42 - 7.47 (m, 6 H, $H^{o}/C_{6}H_{5} + H^{m}/C_{6}H_{4}$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 66.8 (s, $C_{5}H_{4}$), 69.5 (s, $C_{5}H_{4}$), 69.9 (s, C_5H_5), 84.0 (s, C^i/C_5H_4), 123.9 (s, $C^4/C_3H_2N_2$), 126.4 (d, ${}^4J_{CP} = 3.9$ Hz, C^o/C_6H_4), 126.5 (s, $C^{p}/C_{6}H_{5}$), 128.6 (d, ${}^{3}J_{CP} = 7.4 \text{ Hz}$, $C^{m}/C_{6}H_{5}$), 129.2 (s, $C^{m}/C_{6}H_{4}$), 131.5 (d, ${}^{3}J_{CP} = 1.7$ Hz, $C^{5}/C_{3}H_{2}N_{2}$), 134.1 (d, ${}^{2}J_{CP} = 20.8$ Hz, $C^{o}/C_{6}H_{5}$), 135.6 (d, ${}^{3}J_{CP} = 1.7$ Hz, $C^{i}/C_{6}H_{4}$), 135.7 $(d, {}^{1}J_{CP} = 5.5 \text{ Hz}, C^{i}/C_{6}\text{H}_{5}), 140.2 \text{ (s, } C^{p}/C_{6}\text{H}_{4}), 146.9 \text{ (d, } {}^{1}J_{CP} = 6.6 \text{ Hz}, C^{2}/C_{3}\text{H}_{2}\text{N}_{2}). {}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (202.5 MHz, CDCl₃, δ): -28.0 (s). HRMS (ESI-TOF) C₃₁H₂₅FeN₂P [M+nH]⁺ m/z: calcd.: 513.1159, found: 513.1178.

1.8 Synthesis of 1-(4-(ethynylferrocenyl)phenyl))-2-(diphenylphosphino)-1*H*-imidazole (11h). 7 (0.5 g, 1.42 mmol) was reacted with *n*-BuLi (0.57 mL, 1.43 mmol) and chlorodiphenylphosphine (10a, 0.26 mL, 1.45 mmol) as described earlier. The residue was purified by column chromatography on Silica (column size: 12×3.5 cm) using diethyl ether as eluent. The product 11h was obtained as orange solid. Yield: 0.34 g (0.63 mmol, 44 % based on 7).

Anal. Calcd. for $C_{33}H_{25}FeN_2P$ (536.38 g/mol): C, 73.89; H, 4.70; N, 5.22. Found: C, 73.34; H, 4.85; N, 5.15. Mp.: 139 °C. IR (KBr, δ/cm^{-1}): 1433 (m, P-C), 1477 (w, N=C), 1519 (m, C=C), 2204 (w, C=C), 2852/2922 (w, C-H), 3050 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 4.25 (s, 5 H, C₅*H*₅), 4.27 (pt, ³*J*_{HH} = 1.8 Hz, C₅*H*₄), 4.52 (pt, ³*J*_{HH} = 1.8 Hz, C₅*H*₄), 7.18 (dpt, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{HH} = 1.8 Hz, ⁵*J*_{HP} = 1.3 Hz, 2 H, H^o/C₆*H*₄), 7.26 (m, 1 H, H⁵/C₃*H*₂N₂), 7.33 – 7.36 (m, 6 H,), 7.39 (d, ³*J*_{HH} = 0.9 Hz, H⁴/C₃*H*₂N₂), 7.43 – 7.46 (m, 6 H, H^{m,p}/C₆*H*₅), 7.49 (dpt, ³*J*_{HH} = 8.5 Hz, ⁴*J*_{HH} = 1.8 Hz, 2 H, H^m/C₆*H*₄). ¹³C {¹H} NMR (125.81 MHz, CDCl₃, δ): 64.8 (s, C^{*i*}/C₅H₄), 69.2 (s, C₅H₄), 70.2 (s, C₅H₅), 71.6 (s, C₅H₄), 84.8 (s, C=C), 90.4 (s, C=C), 123.7 (s, C⁴/C₃H₂N₂), 124.6 (s, C^p/C₆H₄), 126.4 (d, ⁴*J*_{CP} = 4.2 Hz, C^o/C₆H₄), 128.6 (d, ³*J*_{CP} = 7.8 Hz, C^{*i*}/C₆H₄), 134.0 (d, ²*J*_{CP} = 20.9 Hz, C^o/C₆H₅), 135.6 (d, ³*J*_{CP} = 5.1 Hz, C^{*i*}/C₆H₅), 137.1 (d, ¹*J*_{CP} = 1.7 Hz, C^{*i*}/C₆H₄), 146.9 (d, ¹*J*_{CP} = 7.8 Hz, C²/C₃H₂N₂). ³¹P {¹H} NMR (202.5 MHz, CDCl₃, δ): -29.1 (s). HRMS (ESI-TOF) C₃₃H₂₅FeN₂P [M+nH]⁺ *m*/z: calcd.: 537.1109, found: 537.1178.

1.9 Synthesis of 1-(4-(1,1'-biphenyl))-2-(diphenylphosphino)-4,5-dimethyl-1*H*imidazole (11i). Based on the general procedure described earlier, **9** (0.5 g, 2.01 mmol) was reacted with *n*-BuLi (0.80 mL, 2.00 mmol) and chlorodiphenylphosphine (10a, 0.36 mL, 2.01 mmol). The residue was purified by column chromatography on alumina (column size: $12 \times$ 3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 1:1, *v*:*v*) as eluent. Phosphine **11i** was obtained as a colourless solid. Yield: 0.58 g (1.34 mmol, 67 % based on **9**). Anal. Calcd. for $C_{29}H_{25}N_2P$ (432.50 g/mol): C, 80.53; H, 5.83; N, 6.48. Found: C, 80.35; H, 5.98; N, 6.48. Mp.: 151 °C. IR (KBr, \tilde{v} /cm⁻¹): 1432 (m, P-C), 1488 (s, N=C), 1587 (m, C=C), 2850/2916 (w, C-H), 3045/3062 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 2.02 (s, 3 H, *CH*₃), 2.29 (s, 3 H, *CH*₃), 7.12 (dpt, ³J_{HH} = 8.5 Hz, ⁴J_{HH} = 1.9 Hz, ⁵J_{HP} = 0.8 Hz, 2 H, H³/C₆H₅-C₆H₄), 7.28 – 7.31 (m, 6 H, $H^{m,p}/C_6H_5$), 7.39 (m, 1 H, $H^{4'}/C_6H_5-C_6H_4$), 7.45 – 7.49 (m, 6 H, $H^{3'}/C_6H_5-C_6H_4+H^0/C_6H_5$), 7.60 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 2 H, $H^{2'}/C_6H_5-C_6H_4$), 7.62 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 2 H, $H^{2'}/C_6H_5-C_6H_4$), 7.62 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 2 H, $H^{2'}/C_6H_4$). ${}^{13}C\{{}^{1}H\}$ NMR (125.81 MHz, CDCl₃, δ): 9.8 (s, CH₃), 13.3 (s, CH₃), 127.3 (s, $C^{2'}/C_6H_5-C_6H_4$), 127.3 (s, $C^{i}/C_6H_5-C_6H_4$), 127.9 (s, $C^{4'}/C_6H_5-C_6H_4$), 128.4 (d, ${}^{3}J_{CP} = 7.6$ Hz, C^{m}/C_6H_5), 128.6 (d, ${}^{4}J_{CP} = 2.7$ Hz, $C^{3}/C_6H_5-C_6H_4$), 129.0 (s, C^{p}/C_6H_5), 133.8 (d, ${}^{2}J_{CP} = 20.6$ Hz, C^{o}/C_6H_5), 136.5 (s, C^{i}), 136.5 (d, ${}^{3}J_{CP} = 1.5$ Hz, $C^{4'}/C_6H_5-C_6H_4$), 136.5 (d, ${}^{1}J_{CP} = 2.4$ Hz, C^{i}/C_6H_5), 140.1 (s, C^{i}), 141.6 (s, C^{i}), 144.0 (d, ${}^{1}J_{CP} = 1.2$ Hz, C^{2}/C_3N_2). ${}^{31}P\{{}^{1}H\}$ NMR (202.5 MHz, CDCl₃, δ): -28.9 (s). HRMS (ESI-TOF) C₂₉H₂₅N₂P [M-nH]⁺ *m/z*: calcd.: 433.1783, found: 433.1828.

1.10 Synthesis 1-(4-(1,1'-biphenyl))-2-(dicyclohexylphosphino)-4,5-dimethyl-1Hof imidazole (11i). Using the general synthesis methodology described above, 9 (0.5 g. 2.01 mmol) was reacted with n-BuLi (0.80 mL, 2.00 mmol) and chlorodicyclohexylphosphine (10b, 0.44 mL, 1.99 mmol). The residue was purified by column chromatography on alumina (column size: 12×3.5 cm) using a mixture of *n*-hexane-diethyl ether (ratio 2:1, *v*:*v*) as eluent. Phosphine 11j was obtained as a colourless solid. Yield: 0.54 g (1.21 mmol, 61 % based on 9). Anal. Calcd. for C₂₉H₃₇N₂P (444.59 g/mol): C, 78.34; H, 8.39; N, 6.30. Found: C, 78.77; H, 8.61; N, 6.14. Mp.: 131 °C. IR (KBr, *v*/cm⁻¹): 1442 (m, P-C), 1488/1518 (m, N=C), 1591 (w, C=C), 2846/2922 (s, C-H), 3034 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.06 – 1.31 (m, 10 H, C_6H_{11}), 1.62 – 1.75 (m, 10 H, C_6H_{11}), 1.97 (s, 3 H, CH_3), 2.10 – 2.16 (m, 2 H, $H^{1}/C_{6}H_{11}$), 2.28 (s, 3 H, CH₃), 7.18 (m, 2 H, $H^{3}/C_{6}H_{5}-C_{6}H_{4}$), 7.37 (tt, ${}^{3}J_{HH} = 7.4$ Hz, ${}^{4}J_{HH} =$ 1.8 Hz, 1 H, $H^{4'}/C_6H_5-C_6H_4$), 7.46 (m, 2 H, $H^{3'}/C_6H_5-C_6H_4$), 7.64 (dpt, ${}^{3}J_{HH} = 8.0$ Hz, ${}^{4}J_{HH} =$ 1.9 Hz, 2 H, $H^{2'}/C_6H_5-C_6H_4$), 7.68 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, 2 H, $H^{2}/C_6H_5-C_6H_4$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.8 (s, CH₃), 13.2 (s, CH₃), 26.6 (s, C₆H₁₁), 27.0 (d, $J_{\rm CP} = 8.4$ Hz, C_6H_{11}), 27.1 (d, $J_{\rm CP} = 12.6$ Hz, C_6H_{11}), 29.6 (d, $J_{\rm CP} = 8.0$ Hz, C_6H_{11}), 30.5 (d, $J_{CP} = 16.9 \text{ Hz}, C_{6}H_{11}, 34.6 \text{ (d, } J_{CP} = 7.4 \text{ Hz}, C^{1}/C_{6}H_{11}, 126.0 \text{ (s, } C^{i}, 127.3 \text{ (s, } C^{2'}/C_{6}H_{5}-C_{6}H_{4}, 127.7 \text{ (s, } C^{2}/C_{6}H_{5}-C_{6}H_{4}, 127.8 \text{ (s, } C^{4'}/C_{6}H_{5}-C_{6}H_{4}, 129.0 \text{ (s, } C^{3'}/C_{6}H_{5}-C_{6}H_{4}, 129.2 \text{ (d, } {}^{4}J_{CP} = 2.7 \text{ Hz}, C^{3}/C_{6}H_{5}-C_{6}H_{4}, 135.6 \text{ (s, } C^{i}, 137.1 \text{ (d, } {}^{3}J_{CP} = 2.3 \text{ Hz}, C^{4}/C_{6}H_{5}-C_{6}H_{4}, 140.2 \text{ (s, } C^{i}, 141.3 \text{ (s, } C^{i}), 144.9 \text{ (d, } {}^{1}J_{CP} = 12.1 \text{ Hz}, C^{2}/C_{3}N_{2}). {}^{31}P\{^{1}H\} \text{ NMR (202.5 \text{ MHz}, \text{CDCl}_{3}, \delta): - 23.5 \text{ (s). HRMS (ESI-TOF) } C_{29}H_{37}N_{2}P \text{ [M-nH]}^{+} m/z: \text{ calcd.: } 445.2725, \text{ found: } 445.2767.$

1.11 Synthesis 1-(4-(1,1'-biphenyl))-2-(di-2-furyl-phosphino)-4,5-dimethyl-1Hof imidazole (11k). Following the general synthesis methodology described above, 9 (0.5 g, 2.01 mmol) was reacted with n-BuLi (0.80 mL, 2.00 mmol) and chlorodi-2-furylphosphine (10c, 0.40 g, 1.99 mmol). The residue was purified by column chromatography on alumina (column size: 12×3.5 cm) using diethyl ether as eluent. Phosphine **11k** was obtained as a colourless solid. Yield: 0.59 g (1.43 mmol, 72 % based on 9). Anal. Calcd. for C₂₅H₂₁N₂O₂P (412.42 g/mol): C, 72.81; H, 5.13; N, 6.79. Found: C, 72.87; H, 5.27; N, 6.47. Mp.: 126 °C. IR (KBr, *v*/cm⁻¹): 1006 (s, C-O), 1449 (m, P-C), 1486/1518 (s, N=C), 1548/1584 (w, C=C), 2918 (w, C-H), 3029/3078/3100/3125 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.98 (s, 3 H, CH₃), 2.29 (s, 3 H, CH₃), 6.34 (dt ${}^{4}J_{HP} = 1.6$ Hz, ${}^{3}J_{HH} = 3.4$ Hz, ${}^{3}J_{HH} = 1.8$ Hz, 2 H, $H^{4}/C_{4}H_{3}O$, 6.74 (m, 2 H, $H^{3}/C_{4}H_{3}O$), 7.14 (dpt, ${}^{3}J_{HH} = 8.4$ Hz, ${}^{4}J_{HH} = 1.9$ Hz, ${}^{5}J_{HP} = 0.8$ Hz, 2 H, H³/C₆₅-C₆H₄), 7.38 (tt, ${}^{3}J_{HH} = 7.3$ Hz, ${}^{4}J_{HH} = 1.8$ Hz, 2 H, H⁴/C₆H₅-C₆H₄), 7.47 (m, 2 H, $H^{3'}/C_{6}H_{5}-C_{6}H_{4}$, 7.60 – 7.63 (m, 6 H, $H^{5}/C_{4}H_{3}O + H^{2}/C_{6}H_{5}-C_{6}H_{4} + H^{2'}/C_{6}H_{5}-C_{6}H_{4}$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 6.4 (s, CH₃), 13.2 (s, CH₃), 110.7 (d, ${}^{3}J_{CP} = 6.8$ Hz, $C^{4}/C_{4}H_{3}O)$, 121.6 (d, ${}^{1}J_{CP} = 25.9$ Hz, $C^{3}/C_{4}H_{3}O)$, 127.1 (s, $C^{2}/C_{6}H_{5}-C_{6}H_{4}$), 127.4 (s, $C^{4}/C_{3}N_{2}$), 127.6 (s, $C^{2'}/C_{6}H_{5}-C_{6}H_{4}$), 127.8 (s, $C^{4'}/C_{6}H_{5}-C_{6}H_{4}$), 128.1 (d, ${}^{4}J_{CP}$ = 2.5 Hz, $C^{3}/C_{6}H_{5}-C_{6}H_{4}$, 128.9 (s, $C^{3}'/C_{6}H_{5}-C_{6}H_{4}$), 136.0 (m, $C^{5}/C_{3}N_{2}$), 136.4 (d, ${}^{3}J_{CP} = 3.8$ Hz, $C^{4}/C_{6}H_{5}-C_{6}H_{4}$, 139.9 (s, $C^{1,1'}/C_{6}H_{5}-C_{6}H_{4}$), 140.3 (d, ${}^{1}J_{CP} = 13.5$ Hz, $C^{2}/C_{3}N_{2}$), 141.5 (s, $C^{1,1'}/C_6H_5-C_6H_4$), 147.4 (d, ${}^{4}J_{CP} = 2.8$ Hz, C^{5}/C_4H_3O), 148.3 (d, ${}^{1}J_{CP} = 3.1$ Hz, C^{1}/C_4H_3O). HRMS (ESI-TOF) $C_{25}H_{21}N_2O_2P$ [M+nH]⁺ m/z: calcd.: 413.1365, found: 413.1413.

2 General procedure for the synthesis of seleno phosphines 11a-Se – f-Se. To a toluene solution of 11a - f (100 mg), 2 eq of elemental selenium was added in a single portion and stirred for 2 h at 100 °C. After cooling to ambient temperature, the solvent was removed in membrane-pump vacuum and the respective seleno phosphines were purified by column chromatography on Silica (column size: 2.5×8 cm) and dried in membrane-pump vacuum.

2.1 Synthesis of 1-(4-bromophenyl))-2-(diphenylphosphino selenide)-1*H*-imidazole (11a-Se). Using the general procedure described above, 11a (100 mg, 0.25 mmol) was reacted with elemental selenium (40 mg, 0.51 mmol, 2 eq). The crude product was purified by column chromatography using a mixture of *n*-hexane-diethyl ether (ratio 1:1, v:v) as eluent. Compound **11a-Se** was obtained as a colourless solid. Yield: 0.10 g (0.21 mmol, 84 % based on **11a**). Anal. Calcd. for C₂₁H₁₆BrN₂PSe (486.20 g/mol): C, 51.88; H, 3.32; N, 5.76. Found: C, 52.28; H, 3.31; N, 5.74. Mp.: 160 °C. IR (KBr, *v*/cm⁻¹): 576 (s, P-Se), 1435 (m, P-C), 1484/1497 (m, N=C), 1560 (w, C=C), 3046/3069/3145 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 7.00 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, 2 H, H ${}^{o}/C_{6}H_{4}$), 7.17 (dd, ${}^{3}J_{HH} = 1.2$ Hz, ${}^{4}J_{\rm HP} = 1.7$ Hz, 1 H, H ${}^{4}/C_{3}H_{2}N_{2}$), 7.30 (dpt, ${}^{3}J_{\rm HH} = 8.7$ Hz, ${}^{4}J_{\rm HH} = 2.1$ Hz, 2 H, H ${}^{m}/C_{6}H_{4}$), 7.33 $(pt, {}^{3}J_{HH} = 1.0 \text{ Hz}, \text{H}^{5}/\text{C}_{3}H_{2}\text{N}_{2}), 7.40 - 7.44 \text{ (m, 4 H, H}^{m}/\text{C}_{6}H_{5}), 7.47 - 7.51 \text{ (m, 2 H, 10.10)}$ $H^{p}/C_{6}H_{5}$, 7.82 – 7.87 (m, 4 H, $H^{o}/C_{6}H_{5}$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 123.1 (s, $C^{p}/C_{6}H_{4}$, 126.8 (d, ${}^{3}J_{CP} = 1.8 \text{ Hz}, C^{4}/C_{3}H_{2}N_{2}$), 128.5 (d, ${}^{3}J_{CP} = 13.4 \text{ Hz}, C^{m}/C_{6}H_{5}$), 129.0 (s, $C^{o}/C_{6}H_{4}$, 130.3 (d, ${}^{3}J_{CP} = 43.1 \text{ Hz}, C^{5}/C_{3}H_{2}N_{2}$), 130.6 (d, ${}^{1}J_{CP} = 54.4 \text{ Hz}, C^{i}/C_{6}H_{5}$), 131.8 (s, $C^{m}/C_{6}H_{4}$), 132.0 (d, ${}^{4}J_{CP} = 3.3$ Hz, $C^{p}/C_{6}H_{5}$), 132.9 (d, ${}^{2}J_{CP} = 11.3$ Hz, $C^{o}/C_{6}H_{5}$), 136.4 (s, $C^{i}/C_{6}H_{4}$), 139.7 (d, ${}^{1}J_{CP} = 120.8$ Hz, $C^{2}/C_{3}H_{2}N_{2}$). ${}^{31}P\{{}^{1}H\}$ NMR (202.5 MHz, CDCl₃, δ): 19.1 (${}^{1}J_{PSe} = 753.4$ Hz). HRMS (ESI-TOF) $C_{21}H_{16}BrN_{2}PSe [M+nH]^{+} m/z$: calcd.: 486.9470, found: 486.9413; [M+nNa]^{+} m/z: calcd.: 508.9290, found: 508.9222; [2M+nNa]^{+} m/z: calcd.: 994.8681, found: 994.8595.

2.2 Synthesis of 1-(4-bromophenyl))-2-(dicyclohexylphosphino selenide)-1H-imidazole (11b-Se). Using the synthesis methodology described earlier, 11b (100 mg, 0.24 mmol) was reacted with elemental selenium (38 mg, 0.48 mmol, 2 eq). The crude product was purified by column chromatography using mixture of *n*-hexane-diethyl ether (ratio 10:1, v:v) as eluent. Molecule 11b-Se was obtained as colourless solid. Yield: 0.11 g (0.22 mmol, 92 % based on 11b). Anal. Calcd. for C₂₁H₂₈BrN₂PSe (498.30 g/mol): C, 50.62; H, 5.66; N, 5.62. Found: C, 50.60; H, 5.64; N, 5.52. Mp.: 170 °C. IR (KBr, *v*/cm⁻¹): 558 (s, P-Se), 1445 (m, P-C), 1481/1497 (m, N=C), 1589 (w, C=C), 2928/2846 (s, C-H), 3133/3108 (w, =C-H). ¹H NMR $(500.30 \text{ MHz}, \text{CDCl}_3, \delta)$: 1.11 – 1.19 (m, 2 H, C₆H₁₁), 1.20 – 1.36 (m, 6 H, C₆H₁₁), 1.49 – 1.58 (m, 2 H, C₆H₁₁), 1.61 – 1.67 (m, 4 H, C₆H₁₁), 1.76 – 1.82 (m, 4 H, C₆H₁₁), 1.91 – 1.93 (m, 2 H, $H^{1}/C_{6}H_{11}$), 2.41 – 2.48 (m, 2 H, $H^{1}/C_{6}H_{11}$), 7.06 (pt, ${}^{3}J_{HH} = 1.2$ Hz, 1 H, $H^{4}/C_{3}H_{2}N_{2}$), 7.19 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, 2 H, H^o/C₆H₄), 7.33 (pt, ${}^{3}J_{HH} = 0.8$ Hz, 1 H, $H^{5}/C_{3}H_{2}N_{2}$, 7.53 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, $H^{m}/C_{6}H_{4}$). ${}^{13}C{}^{1}H{}$ NMR (125.81 MHz, CDCl₃, δ): 26.9 (d, $J_{CP} = 1.3$ Hz, C_6H_{11}), 26.1 (s, C_6H_{11}), 26.2 (d, $J_{CP} = 8.0$ Hz, C_6H_{11}), 26.4 (d, $J_{CP} = 7.0$ Hz, C_6H_{11}), 26.7 (d, $J_{CP} = 3.8$ Hz, C_6H_{11}), 39.9 (d, ${}^{1}J_{CP} = 45.3$ Hz, C^{1}/C_6H_{11}), 123.5 (s, $C^{p}/C_{6}H_{4}$), 126.9 (s, $C^{4}/C_{3}H_{2}N_{2}$), 129.4 (d, ${}^{3}J_{CP} = 12.6$ Hz, $C^{5}/C_{3}H_{2}N_{2}$), 130.2 (s, $C^{o}/C_{6}H_{4}$, 131.6 (s, $C^{m}/C_{6}H_{4}$), 135.4 (d, ${}^{1}J_{CP} = 92.3 \text{ Hz}$, $C^{2}/C_{3}H_{2}N_{2}$), 136.8 (s, $C^{i}/C_{6}H_{4}$). ${}^{31}P{}^{1}H{}$ NMR (202.5 MHz, CDCl₃, δ): 41.6 (${}^{1}J_{PSe} = 724.5$ Hz). HRMS (ESI-TOF) $C_{21}H_{28}BrN_2PSe [M+nH]^+ m/z$: calcd.: 499.0409, found: 499.0363; $[M+nNa]^+ m/z$: calcd.: 521.0229, found: 521.0195; [2M]⁺ *m/z*: calcd.: 996.0662, found: 996.0560.

2.3 Synthesis of 1-(4-bromophenyl))-2-(di-2-furylphosphino selenide)-1H-imidazole (11c-Se). Reaction of 11c (100 mg, 0.26 mmol) with elemental selenium (41 mg, 0.52 mmol, 2 eq) gave, after purification by column chromatography using diethyl ether as eluent, **11c-Se** as a colourless solid. Yield: 0.11 g (0.24 mmol, 92 % based on 11c). Anal. Calcd. for C₁₇H₁₂BrN₂O₂PSe (466.13 g/mol): C, 43.80; H, 2.59; N, 6.01. Found: C, 43.76; H, 2.59; N, 5.82. Mp.: 128 °C. IR (KBr, *v*/cm⁻¹): 587 (s, P-Se), 1010 (s, C-O), 1455 (m, P-C), 1483/1494 (m, N=C), 1547 (w, C=C), 3090/3107/3128/3145 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 6.43 (dt ${}^{4}J_{HP}$ = 1.7 Hz, ${}^{3}J_{HH}$ = 3.5 Hz, ${}^{3}J_{HH}$ = 1.8 Hz, 2 H, H ${}^{4}/C_{4}H_{3}O$), 7.14 (dd, ${}^{3}J_{HH}$ = 1.0 Hz, ${}^{4}J_{HP} = 1.8$ Hz, 1 H, H ${}^{4}/C_{3}H_{2}N_{2}$), 7.20 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH} = 2.0$ Hz, 2 H, H ${}^{o}/C_{6}H_{4}$), 7.24 (m, 2 H, $H^{3}/C_{4}H_{3}O$), 7.32 (pt, ${}^{3}J_{HH} = 1.0$ Hz, $H^{5}/C_{3}H_{2}N_{2}$), 7.39 (dpt, ${}^{3}J_{HH} = 8.6$ Hz, ${}^{4}J_{HH}$ = 1.9 Hz, $H^{m}/C_{6}H_{4}$), 7.67 (m, 2 H, $H^{5}/C_{4}H_{3}O$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 111.7 (d, ${}^{3}J_{CP} = 10.2 \text{ Hz}, C^{4}/C_{4}H_{3}O$), 123.2 (s, $C^{p}/C_{6}H_{4}$), 125.6 (d, ${}^{2}J_{CP} = 24.9 \text{ Hz}, C^{3}/C_{4}H_{3}O$), 126.5 (s, $C^4/C_3H_2N_2$), 128.4 (s, C^o/C_6H_4), 131.3 (d, ${}^3J_{CP} = 18.2 \text{ Hz}$, $C^5/C_3H_2N_2$), 131.9 (s, C^m/C_6H_4), 135.5 (s, $C^{i}/C_{6}H_{4}$), 138.6 (d, ${}^{1}J_{CP} = 139.9$ Hz, $C^{2}/C_{3}H_{2}N_{2}$), 143.7 (d, ${}^{1}J_{CP} = 121.8$ Hz, $C^{2}/C_{4}H_{3}O$, 149.3 (d, ${}^{4}J_{CP} = 7.3$ Hz, $C^{5}/C_{4}H_{3}O$). ${}^{31}P{}^{1}H$ NMR (202.5 MHz, CDCl₃, δ): -20.7 $({}^{1}J_{PSe} = 789.9 \text{ Hz})$. HRMS (ESI-TOF) $C_{17}H_{12}BrN_2O_2PSe [M+nH]^+ m/z$: calcd.: 466.9055, found: 466.9056.

2.4 Synthesis of 1-(4-iodophenyl)-2-(diphenylphosphino selenide)-4,5-dimethyl-1*H*imidazole (11d-Se). Compound 11d (100 mg, 0.21 mmol) was reacted with elemental selenium (33 mg, 0.42 mmol, 2 eq) as described earlier. The residue was purified by column chromatography using a mixture of *n*-hexane-diethyl ether (ratio 1:2, *v*:*v*) as eluent. Seleno phosphine 11d-Se was obtained as colourless solid. Yield: 0.10 g (0.18 mmol, 86 % based on 11d). Anal. Calcd. for $C_{23}H_{20}IN_2PSe$ (561.26 g/mol): C, 49.22; H, 3.59; N, 4.99. Found: C, 48.91; H, 3.65; N, 4.91. Mp.: 86 °C. IR (KBr, *δ*/cm⁻¹): 557 (s, P-Se), 1435 (m, P-C), 1488 (m, N=C), 1580 (w, C=C), 2910/2965 (s, C-H), 3048 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.87 (s, 3 H, CH₃), 2.23 (s, 3 H, CH₃), 6.68 (dpt, ³*J*_{HH} = 8.6 Hz, ⁴*J*_{HH} = 2.0 Hz, 2 H, H^o/C₆*H*₄), 7.35 – 7.39 (m, 4 H, H^m/C₆*H*₅), 7.43 – 7.45 (m, 2 H, H^p/C₆*H*₅), 7.47 (dpt, ³*J*_{HH} = 8.6 Hz, ⁴*J*_{HH} = 2.0 Hz, H^m/C₆*H*₄), 7.81 – 7.86 (m, 4 H, H^o/C₆*H*₄), 128.3 (d, ³*J*_{CP} = 12.9 Hz, C^m/C₆H₅), 130.1 (s, C⁴/C₃N₂), 130.7 (s, Co/C₆H₄), 130.9 (d, ¹*J*_{CP} = 81.6 Hz, C^{*i*}/C₆H₅), 131.6 (d, ⁴*J*_{CP} = 2.8 Hz, C^p/C₆H₅), 133.0 (d, ²*J*_{CP} = 11.4 Hz, C^o/C₆H₅), 135.8 (s, C^{*i*}/C₆H₄), 136.1 (d, ³*J*_{CP} = 14.8 Hz, C⁵/C₃N₂), 136.5 (d, ¹*J*_{CP} = 125.8 Hz, C²/C₃N₂), 137.9 (s, C^m/C₆H₄). ³¹P {¹H} NMR (202.5 MHz, CDCl₃, δ): 17.6 (¹*J*_{PSe} = 745.4 Hz). HRMS (ESI-TOF) C₂₃H₂₀IN₂PSe [M+nH]⁺ *m/z*: calcd.: 562.9648, found: 562.9607; [M+nNa]⁺ *m/z*: calcd.: 584.9467, found: 584.9415; [2M+nNa]⁺ *m/z*: calcd.: 1146.9051, found: 1146.8976.

2.5 Synthesis of 1-(4-iodophenyl))-2-(dicyclohexylphosphino selenide)-4,5-dimethyl-1*H*-imidazole (11e-Se). Molecule 11e (100 mg, 0.20 mmol) was reacted with elemental selenium (32 mg, 0.41 mmol, 2 eq) as described above. The crude product was purified by column chromatography using a mixture of *n*-hexane-diethyl ether (ratio 1:1, *v*:*v*) as eluent. Molecule 11e-Se was obtained as colourless solid. Yield: 0.11 g (0.19 mmol, 95 % based on 11e). Anal. Calcd. for C₂₃H₃₂IN₂PSe (573.35 g/mol): C, 48.18; H, 5.63; N, 4.89. Found: C, 47.91; H, 5.79; N, 4.79. Mp.: 210 °C. IR (KBr, \hat{v} /cm⁻¹): 576 (m P-Se), 1444 (m, P-C), 1488 (m, N=C), 1590 (w, C=C), 2848/2926 (s, C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.12 –1.33 (m, 8 H, C₆H₁₁), 1.48 – 1.56 (m, 2 H, C₆H₁₁), 1.61 – 1.67 (m, 4 H, C₆H₁₁), 1.75 – 1.80 (m, 4 H, C₆H₁₁), 6.90 (dpt, ³J_{HH} = 8.5 Hz, ³J_{HH} = 2.6 Hz, ⁴J_{HH} = 1.9 Hz, 2 H, H^o/C₆H₄), 7.74 (dpt, ³J_{HH} = 8.5 Hz, ³J_{HH} = 2.6 Hz, ⁴J_{HH} = 1.9 Hz, 2 H, H^m/C₆H₄). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.6 (s, CH₃), 13.0 (s, CH₃), 26.0 (d, J_{CP} = 1.4 Hz, C₆H₁₁), 26.2 (d, J_{CP} = 6.8 Hz, $C_{6}H_{11}$), 26.3 (d, $J_{CP} = 8.4$ Hz, $C_{6}H_{11}$), 26.4 (d, $J_{CP} = 14.3$ Hz, $C_{6}H_{11}$), 26.8 (d, $J_{CP} = 3.7$ Hz, $C_{6}H_{11}$), 39.9 (d, ${}^{1}J_{CP} = 45.7$ Hz, $C'/C_{6}H_{11}$), 95.0 (s, $C'/C_{6}H_{4}$), 131.4 (s, $C'/C_{6}H_{4}$), 129.3 (s, $C'/C_{3}N_{2}$), 132.6 (d, ${}^{1}J_{CP} = 97.8$ Hz, $C'/C_{3}N_{2}$), 135.2 (d, ${}^{3}J_{CP} = 10.3$ Hz, $C'/C_{3}N_{2}$), 136.7 (s, $C'/C_{6}H_{4}$), 137.9 (s, $C''/C_{6}H_{4}$). ${}^{31}P{}^{1}H{}$ NMR (202.5 MHz, CDCl₃, δ): 41.2 (${}^{1}J_{PSe} = 717.5$ Hz). HRMS (ESI-TOF) $C_{23}H_{32}IN_{2}PSe$ [M+nH]⁺ m/z: calcd.: 575.0587, found: 575.0521.

2.6 Synthesis of 1-(4-iodophenyl))-2-(di-2-furylphosphino selenide)-4,5-dimethyl-1Himidazole (11f-Se). Phosphine 11f (100 mg, 0.22 mmol) was reacted with elemental selenium (35 mg, 0.44 mmol, 2 eq) as described earlier. The crude product was purified by column chromatography using diethyl ether as eluent. Compound 11f-Se was obtained as colourless solid. Yield: 0.11 g (0.20 mmol, 91 % based on 11f). Anal. Calcd. for C₁₉H₁₆IN₂O₂PSe (541.18 g/mol): C, 42.17; H, 2.98; N, 5.18. Found: C, 42.32; H, 3.10; N, 5.07. Mp.: 142 °C. IR (NaCl, \tilde{v}/cm^{-1}): 583 (s, P-Se), 1004 (s, C-O), 1456 (m, P-C), 1488 (s, N=C), 1550/1578 (w, C=C), 2918 (w, C-H), 3120 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 1.90 (s, 3 H, CH₃), 2.22 (s, 3 H, CH₃), 6.41 (dt ${}^{4}J_{HP}$ = 1.7 Hz, ${}^{3}J_{HH}$ = 3.5 Hz, ${}^{3}J_{HH}$ = 1.8 Hz, 2 H, H ${}^{4}/C_{4}H_{3}O$), 6.90 $(dpt, {}^{3}J_{HH} = 8.6 \text{ Hz}, {}^{3}J_{HH} = 2.6 \text{ Hz}, {}^{4}J_{HH} = 2.0 \text{ Hz}, 2 \text{ H}, \text{H}^{o}/\text{C}_{6}H_{4}), 7.19 \text{ (m, 2 H, H}^{3}/\text{C}_{4}H_{3}\text{O}),$ 7.58 (dpt, ${}^{3}J_{\text{HH}} = 8.7$ Hz, ${}^{3}J_{\text{HH}} = 2.6$ Hz, ${}^{4}J_{\text{HH}} = 2.1$ Hz, $H^{m}/C_{6}H_{4}$), 7.65 (m, 2 H, $H^{5}/C_{4}H_{3}$ O). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.3 (s, CH₃), 13.1 (s, CH₃), 94.9 (s, C^{*p*}/C₆H₄), 111.6 (d, ${}^{3}J_{CP} = 10.1 \text{ Hz}, C^{4}/C_{4}H_{3}O), 125.4$ (d, ${}^{2}J_{CP} = 24.5 \text{ Hz}, C^{3}/C_{4}H_{3}O), 129.9$ (s, $C^{o}/C_{6}H_{4}), 130.4$ (s, C^4/C_3N_2), 135.4 (s, C^i/C_6H_4), 135.9 (s, C^5/C_3N_2), 137.1 (d, ${}^3J_{CP} = 17.2$ Hz, $C^{2}/(CH_{3})_{2}C_{3}N_{2}$, 138.1 (s, $C^{m}/C_{6}H_{4}$), 144.2 (d, ${}^{1}J_{CP} = 120.8$ Hz, $C^{2}/C_{4}H_{3}O$), 149.0 (d, ${}^{4}J_{CP} =$ 7.3 Hz, $C^{5}/C_{4}H_{3}O$). ³¹P{¹H} NMR (202.5 MHz, CDCl₃, δ): -21.4 (¹J_{PSe} = 781.0 Hz). HRMS (ESI-TOF) $C_{19}H_{16}IN_2O_2PSe [M+nH]^+ m/z$: calcd.: 542.9233, found: 542.9206; $[M+nNa]^+$ *m/z*: calcd.: 564.9052, found: 564.9003.

3 General procedure for the synthesis of imidazolium salts 16a - 16d. To 3a - c (0.5 g) dissolved in acetonitrile (50 mL) one eq of *n*-BuI (12a) or *n*-C₈H₁₇I (12b) was added in a single portion and the reaction mixture was stirred at 70 °C for 5 (12a) or 14 (12b) days. The progress of the reaction was monitored by ¹H NMR spectroscopy. After completion of the reaction the solvent was removed in membrane-pump vacuum. The crude product was washed five times with diethyl ether (10 mL portions) and dried in membrane-pump vacuum.

Synthesis of 1-(4-bromophenyl)-3-"butyl-1H-imidazolium iodide (16a). Following 3.1 the synthesis methodology described above, **3a** (0.5 g, 2.24 mmol) was reacted with *n*-BuI (12a, 0.30 mL, 2.64 mmol, 1.2 eq). After appropriate work-up, the product was obtained as pale beige solid. Yield: 0.90 g (2.21 mmol, 99 % based on **3a**). Anal. Calcd. for C₁₃H₁₆BrIN₂ (407.09 g/mol): C, 38.36; H, 3.96; N, 6.88. Found: C, 38.40; H, 3.92; N, 6.64. Mp.: 120 °C. IR (KBr, *v*/cm⁻¹): 1496/1550 (s, N=C), 1590 (m, C=C), 2851/2872/2891/2932/2963/2995 (m - s, C-H), 3045/3073/3155 (w, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 0.93 (t, ³J_{HH} = 7.4 Hz, 3 H, $CH_2CH_2CH_2CH_3$), 1.39 (sext, ${}^{3}J_{HH} = 7.6$ Hz, 2 H, $CH_2CH_2CH_2CH_3$), 1.95 (quint, ${}^{3}J_{\text{HH}} = 7.5 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$, 4.50 (t, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}, 2 \text{ H}, \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3}$), 7.63 (dpt, ${}^{3}J_{\text{HH}} = 8.9 \text{ Hz}$, ${}^{4}J_{\text{HH}} = 2.2 \text{ Hz}$, 2 H, H^{*o*,*m*}/C₆*H*₄), 7.76 (pt, ${}^{3}J_{\text{HH}} = 1.8 \text{ Hz}$, 1 H, C₃*H*₃N₂), 7.78 (dpt, ${}^{3}J_{HH} = 8.9$ Hz, ${}^{4}J_{HH} = 2.1$ Hz, 2 H, H^{o,m} /C₆H₄), 7.92 (pt, ${}^{3}J_{HH} = 1.9$ Hz, 1 H, $C_3H_3N_2$, 10.54 (pt, ${}^4J_{HH} = 1.5$ Hz, 1 H, $H^2/C_3H_3N_2$). ${}^{13}C{}^{1}H$ NMR (125.81 MHz, CDCl₃, δ): 13.5 (s, CH₂CH₂CH₂CH₃), 19.5 (s, CH₂CH₂CH₂CH₃), 32.1 (s, CH₂CH₂CH₂CH₃), 50.4 (s, $CH_2CH_2CH_2CH_3$, 121.3 (s, $C_3H_3N_2$), 123.6 (s, $C_3H_3N_2$), 123.8 (s, C^o/C_6H_4), 124.3 (s, $C^{p}/C_{6}H_{4}$, 133.3 (s, $C^{i}/C_{6}H_{4}$), 133.6 (s, $C^{m}/C_{6}H_{4}$), 135.0 (s, $C^{2}/C_{3}H_{3}N_{2}$). HRMS (ESI-TOF) $[C_{13}H_{16}BrN_2]^+$ $[M]^+$ *m/z*: calcd.: 279.0494, found: 279.0491.

3.2 Synthesis of 1-(4-bromophenyl)-3-ⁿoctyl-1*H*-imidazolium hexafluorophosphate ([16b]PF₆). Compound 3a (0.5 g, 2.24 mmol) was reacted with $n-C_8H_{17}I$ (12b, 0.41 mL, 2.27 mmol) as described earlier giving, after appropriate work-up, the imidazolium salt 16b as yellow solid. Please, notice that due to the long reaction time, impurities were present which could not be removed, neither by chromatography nor precipitation. Therefore, the hexafluorophosphate salt was prepared by addition of a solution of potassium hexafluorophosphate (0.20 g, 1.09 mmol) in water (20 mL) to 16b (0.5 g, 1.08 mmol) dissolved in acetone (20 mL). After stirring at ambient temperature for 1 h, the solvent was removed in membrane-pump vacuum and the crude product was purified by column chromatography on Silica (column size: 10×2 cm) using acetone as eluent. Compound [16b]PF₆ was obtained as a pale yellow solid. Yield: 0.45 g (0.94 mmol, 87 % based on 3a). Anal. Calcd. for C₁₇H₂₄BrF₆N₂P (481.25 g/mol): C, 42.43; H, 5.03; N, 5.82. Found: C, 42.23; H, 4.95; N, 5.73. Mp.: 101 °C. IR (KBr, *v*/cm⁻¹): 1493 (m, N=C), 1549/1561 (m, C=C), 2851/2921/2950 (s, C-H), 3042/3060 (m, =C-H). ¹H NMR (500.30 MHz, CDCl₃, δ): 0.80 (t, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, 3 \text{ H}, \text{CH}_{2}(\text{CH}_{2})_{6}\text{CH}_{3}), 1.15 - 1.23 \text{ (m, 6 H, CH}_{2}(\text{CH}_{2})_{6}\text{CH}_{3}), 1.26 - 1.37 \text{ (m, 4)}$ H, CH₂(CH₂)₆CH₃), 1.95 (pent, ${}^{3}J_{HH} = 7.3$ Hz, 2 H, CH₂(CH₂)₆CH₃), 4.47 (t, ${}^{3}J_{HH} = 7.4$ Hz, 2 H, CH₂(CH₂)₆CH₃), 7.62 (m, 2 H, H^o/C₆H₄), 7.71 (m, 1 H, H^{4,5}/C₃H₃N₂), 7.78 (m, 2 H, $H^{m}/C_{6}H_{4}$), 7.94 (m, 1 H, $H^{4,5}/C_{3}H_{3}N_{2}$), 10.52 (s, 1 H, $H^{2}/C_{3}H_{3}N_{2}$). ¹³C{¹H} NMR (125.81 MHz, CDCl₃, δ): 14.0 (s, CH₂(CH₂)₆CH₃), 22.5 (s, CH₂(CH₂)₆CH₃), 26.2 (s, CH₂(CH₂)₆CH₃), 28.9 (s, CH₂(CH₂)₆CH₃), 29.0 (s, CH₂(CH₂)₆CH₃), 30.2 (s, CH₂(CH₂)₆CH₃), 31.6 (s, CH₂(CH₂)₆CH₃), 50.7 (s, CH₂(CH₂)₆CH₃), 121.3 (s, C₃H₃N₂), 123.5 (s, C₃H₃N₂), 123.8 (s, $C^{o}/C_{6}H_{4}$, 124.3 (s, $C^{p}/C_{6}H_{4}$), 133.3 (s, $C^{i}/C_{6}H_{4}$), 133.6 (s, $C^{m}/C_{6}H_{4}$), 134.9 (s, $C^{2}/C_{3}H_{3}N_{2}$). ${}^{31}P{}^{1}H{}$ NMR (202.5 MHz, CDCl₃, δ): -144.5 (sept, ${}^{1}J_{PF} = 712.6$ Hz, *PF*₆). HRMS (ESI-TOF) $[C_{17}H_{24}BrN_2]^+ [M]^+ m/z$: calcd.: 335.1107, found: 335.1117.

3.3 Synthesis of 1-(4-iodophenyl)-3-ⁿoctyl-4,5-dimethyl-1*H*-imidazolium iodide (16c).

Using the synthesis procedure described above, **3b** (0.5 g, 1.68 mmol) was reacted with *n*-C₈H₁₇I (**12b**, 0.31 mL, 1.72 mmol). After appropriate work-up, **16c** was obtained as pale beige solid. Yield: 0.90 g (1.67 mmol, 99 % based on **3b**). Anal. Calcd. for C₁₉H₂₈J₂N₂ (538.25 g/mol): C, 42.40; H, 5.24; N, 5.20. Found: C, 42.19; H, 5.24; N, 4.93. Mp.: 175 °C. IR (KBr, δ /cm⁻¹): 1560 (s, N=C), 1636/1655 (m, C=C), 2855/2923/2974 (m, C-H), 3116 (w, =C-H).¹H NMR (500.30 MHz, CDCl₃, δ): 0.87 (t, ³*J*_{HH} = 7.1 Hz, 3 H, CH₂(CH₂)₆CH₃), 1.26 – 1.41 (m, 10 H, CH₂(C*H*₂)₆CH₃), 1.93 (pent, ³*J*_{HH} = 7.6 Hz, 2 H, CH₂(CH₂)₆CH₃), 2.17 (s, 3 H, CH₃), 2.33 (s, 3 H, CH₃), 4.37 (t, ³*J*_{HH} = 7.7 Hz, 2 H, CH₂(CH₂)₆CH₃), 7.41 (dpt, ³*J*_{HH} = 8.7 Hz, ⁴*J*_{HH} = 2.0 Hz, 2 H, H^o/C₆*H*₄), 7.92 (dpt, ³*J*_{HH} = 8.7 Hz, ⁴*J*_{HH} = 2.0 Hz, 2 H, H^m/C₆*H*₄), 9.82 (s, 1 H, H²/(CH₃)₂C₃*H*N₂). ¹³C {¹H} NMR (125.81 MHz, CDCl₃, δ): 9.1 (s, CH₃), 9.6 (s, CH₃), 14.1 (s, CH₂(CH₂)₆CH₃), 22.6 (s, CH₂(CH₂)₆CH₃), 31.7 (s, CH₂(CH₂)₆CH₃), 29.0 (s, CH₂(CH₂)₆CH₃), 29.0 (s, CH₂(CH₂)₆CH₄), 127.2 (s, C₃HN₂), 127.4 (s, C₃HN₂), 127.9 (s, C^o/C₆H₄), 132.7 (s, C^{*i*}/C₆H₄), 134.7 (s, C²/C₃HN₂), 139.4 (s, C^m/C₆H₄). HRMS (ESI-TOF) [C₁₉H₂₈N₂][IM]⁺ m/z: calcd.: 411.1250, found: 411.1292.

3.4 Synthesis of 1-phenyl-3-^{*n*} octyl-4,5-dimethyl-1*H*-imidazolium iodide (16d). Using the synthesis methodology described above, **3c** (0.5 g, 2.90 mmol) was reacted with *n*-C₈H₁₇I (**12b**, 0.54 mL, 2.99 mmol). After appropriate work-up, **16d** could be isolated as yellow oil. Yield: 1.17 g (2.84 mmol, 98 % based on **3c**). Anal. Calcd. for C₁₉H₂₉IN₂ (412.35 g/mol): C, 55.34; H, 7.09; N, 6.79. Found: C, 55.04; H, 7.24; N, 6.21. IR (KBr, \tilde{v} /cm⁻¹): 1460 (m, P-C), 1498/1555 (s, N=C), 1596/1631 (m, C=C), 2854/2926/2954 (s, C-H), 3111 (w, =C-H).¹H NMR (500.30 MHz, CDCl₃, δ): 0.77 (t, ³*J*_{HH} = 7.1 Hz, 3 H, CH₂(CH₂)₆CH₃), 1.14 – 1.35 (m, 10 H, CH₂(CH₂)₆CH₃), 1.84 (quint, ³*J*_{HH} = 7.6 Hz, CH₂(CH₂)₆CH₃), 2.11 (s, 3 H, CH₃), 2.28

(s, 3 H, CH₃), 4.30 (t, ${}^{3}J_{\text{HH}} = 7.7$ Hz, CH₂(CH₂)₆CH₃), 7.47 – 7.50 (m, 5 H, C₆H₅), 9.55 (s, 1 H, (CH₃)₃C₃HN₂). 13 C{¹H} NMR (125.81 MHz, CDCl₃, δ): 9.0 (s, CH₃), 9.4 (s, CH₃), 13.9 (s, CH₂(CH₂)₆CH₃), 22.4 (s, CH₂(CH₂)₆CH₃), 26.2 (s, CH₂(CH₂)₆CH₃), 28.9 (s, CH₂(CH₂)₆CH₃), 29.8 (s, CH₂(CH₂)₆CH₃), 31.5 (s, CH₂(CH₂)₆CH₃), 47.7 (s, CH₂(CH₂)₆CH₃), 125.9 (s, C^o/C₆H₅), 127.1 (s, C₃HN₂), 127.3 (s, C₃HN₂), 130.1 (s, C^m/C₆H₅), 130.6 (s, C^p/C₆H₅), 133.0 (s, Cⁱ/C₆H₅), 134.4 (s, C²/C₃HN₂). HRMS (ESI-TOF) [C₁₉H₂₉N₂]I [M]⁺ m/z: calcd.: 285.2325, found: 285.2322.

NMR spectra of 3b

 $^{13}C_{l}^{l}H_{l}^{l}NMR:$

NMR spectra of 11d

¹H NMR:

$^{13}C_{\{}^{l}H_{\}}^{l}NMR:$

NMR spectra of 11d-Se

 $^{1}HNMR$:

 $^{13}C_{l}^{f^{1}}H_{l}^{3}NMR:$

 $^{31}P_{l}^{f^{1}}H_{l}^{3}NMR$:

NMR spectra of 16c

¹H NMR:

 $^{13}C_{l}^{l}H_{l}^{l}NMR:$

NMR spectra of 17a

¹H NMR:

 $^{13}C_{l}^{l}H_{l}^{l}NMR:$

NMR spectra of 20

¹H NMR:

ppm (1) 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50

 $^{13}C_{l}^{f}H_{l}^{2}NMR:$

 $^{31}P_{l}^{f^{1}}H_{l}^{3}NMR$:

Phosphino Imidazoles and Imidazolium Salts for Suzuki *C-C* Coupling Reactions

Bianca Milde, Dieter Schaarschmidt, Tobias Rüffer, and Heinrich Lang

Chemnitz University of Technology, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany.

Electronic Supplementary Information

- General -

Figure S1. Cyclovoltammograms of **3a** and **3b** (left) and **5** and **7** (right) in dichloromethane solutions (1.0 mmol·dm⁻³) at 25 °C, supporting electrolyte $[(n-Bu)_4N][B(C_6F_5)_4]$ (0.1 mol·dm⁻³) with a scan rate of 100 mV·s⁻¹.

Figure S2 Reaction profile for the coupling of 2-bromo toluene (2.92 mmol) with phenyl boronic acid (3.85 mmol) to give 2-methyl biphenyl using $[Pd(OAc)_2] / 11a - f$ (0.25 mol% [Pd], 0.5 mol% 11a - f) in the presence of K₂CO₃ (8.76 mmol) in a 1,4-dioxane-water mixture (ratio 2:1, *v*:*v*) at 100 °C.

Figure S3 Reaction profile for the coupling of 2-bromo toluene (2.92 mmol) with phenyl boronic acid (3.85 mmol) to give 2-methyl biphenyl using $[Pd(OAc)_2] / 11d - f$, 11i - k (0.25 mol% [Pd], 0.5 mol% 11d - f, 11i - k) in the presence of K₂CO₃ (8.76 mmol) in a 1,4-dioxane-water mixture (ratio 2:1, *v*:*v*) at 100 °C.

Figure S4 Reaction profile for the coupling of 2-bromo toluene (2.92 mmol) with phenyl boronic acid (3.85 mmol) to give 2-methyl biphenyl using $[Pd(OAc)_2] / 11a - f$ (0.25 mol% [Pd], 0.5 mol% 11a, 11d, 11g - i) in the presence of K₂CO₃ (8.76 mmol) in a 1,4-dioxane-water mixture (ratio 2:1, *v*:*v*) at 100 °C.

Figure S5 Reaction profile for the coupling of 2-bromo toluene (2.92 mmol) with phenyl boronic acid (3.85 mmol) to give 2-methyl biphenyl using $[Pd(OAc)_2] / 11a - f$ (0.25 mol% [Pd], 0.5 mol% 11d, 11e, 17a, 17b, 20) in the presence of K₂CO₃ (8.76 mmol) in a 1,4-dioxane-water mixture (ratio 2:1, *v*:*v*) at 100 °C.

Phosphino Imidazoles and Imidazolium Salts

for Suzuki C,C Coupling Reactions

Bianca Milde, Dieter Schaarschmidt, Tobias Rüffer, and Heinrich Lang

Chemnitz University of Technology, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, Straße der Nationen 62, 09111 Chemnitz, Germany.

Electronic Supplementary Information

- X-ray Crystallography -

For the refinement of *cis*-19 the following restraints were applied:

- DELU 0.010 0.010 C82 CL7 CL8 CL9
- SIMU 0.040 0.080 1.700 C82 CL7 CL8 CL9
- *ISOR* 0.100 C82 CL7 CL8 CL9
- DELU 0.010 0.010 C81 CL4 CL5 CL6
- SIMU 0.040 0.080 1.700 C81 CL4 CL5 CL6
- ISOR 0.100 C81 CL4 CL5 CL6
- DELU 0.010 0.010 C80 CL1 CL2 CL3
- SIMU 0.040 0.080 1.700 C80 CL1 CL2 CL3
- ISOR 0.100 C80 CL1 CL2 CL3
- DFIX 1.500 0.020 C59 C60
- BIND C59 C60
- DANG 2.600 0.040 C58 C60
- DFIX 1.500 0.020 C71 C72
- DFIX 1.500 0.020 C72 C73
- DANG 2.600 0.040 C71 C73
- DFIX 1.500 0.020 C7 C8
- DANG 2.600 0.040 C6 C8
- DFIX 1.500 0.020 C45 C46
- DFIX 1.500 0.020 C46 C47
- DANG 2.600 0.040 C44 C46
- DANG 2.600 0.040 C45 C47
- DFIX 1.500 0.020 C58 C59
- DFIX 1.500 0.020 C57 C58
- DFIX 1.470 0.020 N9 C57
- DFIX 1.500 0.020 C57 C58
- DFIX 1.500 0.020 C58 C59
- DFIX 1.500 0.020 C59 C60
- DANG 2.500 0.040 N9 C58
- DANG 2.500 0.040 C57 C59
- DANG 2.500 0.040 C58 C60

- DFIX 1.500 0.020 C58' C59'
- DFIX 1.500 0.020 C57 C58'
- DFIX 1.500 0.020 C59' C60'
- DANG 2.500 0.040 N9 C58'
- DANG 2.500 0.040 C57' C59'
- DANG 2.500 0.040 C58' C60'
- DFIX 1.460 0.020 N11 C70
- DFIX 1.500 0.020 C70 C71
- DFIX 1.500 0.020 C71 C72
- DFIX 1.500 0.020 C72 C73
- DANG 2.500 0.040 N11 C71
- DANG 2.500 0.040 C70 C72
- DANG 2.500 0.040 C71 C73
- DFIX 1.500 0.020 C70 C71'
- DFIX 1.500 0.020 C71' C72'
- DFIX 1.500 0.020 C72' C73'
- DANG 2.500 0.040 N11 C71'
- DANG 2.500 0.040 C70 C72'
- DANG 2.500 0.040 C71' C73'
- DFIX 1.470 0.020 N7 C44
- DFIX 1.500 0.020 C44 C45
- DFIX 1.500 0.020 C45 C46
- DFIX 1.500 0.020 C46 C47
- DANG 2.500 0.040 N7 C45
- DANG 2.510 0.040 C44 C46
- DANG 2.520 0.040 C45 C47
- DFIX 1.470 0.020 N5 C31
- DFIX 1.500 0.020 C31 C32
- DFIX 1.520 0.020 C32 C33
- DFIX 1.500 0.020 C33 C34
- DANG 2.500 0.040 N5 C32

- DANG 2.520 0.040 C31 C33
- DANG 2.520 0.040 C32 C34
- DFIX 1.520 0.020 C32 C33'
- DFIX 1.500 0.020 C33' C34'
- DANG 2.520 0.040 C31 C33'
- DANG 2.520 0.040 C32 C34'
- DFIX 1.470 0.020 N3 C18
- DFIX 1.520 0.020 C18 C19
- DFIX 1.520 0.020 C19 C20
- DFIX 1.520 0.020 C20 C21
- DANG 2.500 0.040 N3 C19
- DANG 2.520 0.040 C18 C20
- DANG 2.520 0.040 C19 C21
- DFIX 1.470 0.020 N1 C5
- DFIX 1.520 0.020 C5 C6
- DFIX 1.520 0.020 C6 C7
- DFIX 1.500 0.020 C7 C8
- DANG 2.520 0.040 N1 C6
- DANG 2.520 0.040 C5 C7
- DANG 2.520 0.040 C6 C8
- DELU 0.010 0.010 C1 C2 C3 N1 N2
- SIMU 0.040 0.080 1.700 C1 C2 C3 N1 N2
- *ISOR* 0.100 C1 C2 C3 N1 N2
- DELU 0.010 0.010 C6 C7 C8
- *SIMU* 0.040 0.080 1.700 C6 C7 C8
- ISOR 0.100 C6 C7 C8
- DELU 0.010 0.010 C57 C58 C59 C60 N9
- SIMU 0.040 0.080 1.700 C57 C58 C59 C60 N9
- ISOR 0.100 C57 C58 C59 C60 N9
- DELU 0.010 0.010 C57 C58' C59' C60' N9
- SIMU 0.040 0.080 1.700 C57 C58' C59' C60' N9

ISOR 0.100 C57 C58' C59' C60' N9

EADP C59' C60'

- DELU 0.010 0.010 C31 C32 C33' C34' N5
- SIMU 0.040 0.080 1.700 C31 C32 C33' C34' N5
- ISOR 0.100 C31 C32 C33' C34' N5
- DELU 0.010 0.010 C31 C32 C33 C34
- SIMU 0.040 0.080 1.700 C31 C32 C33 C34
- ISOR 0.100 C31 C32 C33 C34
- DELU 0.010 0.010 C70 C71 C72 C73 N11
- SIMU 0.040 0.080 1.700 C70 C71 C72 C73 N11
- ISOR 0.100 C70 C71 C72 C73 N11
- DELU 0.010 0.010 C70 C71' C72' C73' N11
- SIMU 0.040 0.080 1.700 C70 C71' C72' C73' N11
- ISOR 0.100 C70 C71' C72' C73' N11
- DFIX 2.600 0.020 PD3 I5
- DFIX 2.600 0.020 PD3 I5'
- DANG 3.800 0.040 I6 I5
- DANG 3.800 0.040 I6 I5'
- DANG 3.400 0.040 C62 I5
- DFIX 3.700 0.020 I6 CL6
- EADP C72 C73
- EADP I6 I6'

The DELU, SIMU and ISOR restraints were used in order to refine respective atoms anisotropically. In case that selected atoms remained "not positive defined" EADP restraints were applied.

DFIX and DANG restraints were used in order to refine especially disordered fragments at reasonable bond distances and angles.