Supplementary data for:

Exchange Chemistry of tBu₃PCO₂B(C₆F₅)₂Cl

Rebecca C. Neu, Gabriel Ménard and Douglas W. Stephan*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

General Considerations: All manipulations were carried out under an atmosphere of dry, O₂-free N₂ employing standard Schlenk-line and glovebox techniques. Solvents (CH₂Cl₂, pentane and hexanes) were dried by employing a Grubbs-type column system (Innovative Technology), degassed and stored under N₂. Bromobenzene was dried over CaH₂ and distilled under N₂ while Cyclohexane was dried over sodium and benzophenone and similarly distilled under N₂. CD₂Cl₂ was vacuum transferred from CaH₂, degassed and stored under N₂. Me₃SiOSO₂CF₃ (Sigma-Aldrich) and [Ph₃C][B(C₆F₅)₄] (Sigma-Aldrich) were used as received. 0.5tol·Al(C₆F₅)₃¹, Cp₂TiMe₂² and *t*Bu₃P(CO₂)B(C₆F₅)₂Cl³ were prepared according to literature procedures. ¹H, ¹¹B, ¹³C, ¹⁹F, ²⁷Al and ³¹P NMR spectra were recorded at 25 °C, unless otherwise stated, on a Varian NMR System 400 MHz or Bruker Avance III 400 MHz spectrometer and were referenced using (residual) solvent resonances relative to SiMe₄ (¹H and ¹³C) or relative to an external standard (¹¹B: (Et₂O)BF₃, ¹⁹F: CFCl₃, ²⁷Al: Al(NO₃)₃, ³¹P: 85% H₃PO₄). Chemical shifts are reported in ppm and coupling constants as scalar values in Hz. Combustion analyses were performed in house employing a Perkin-Elmer CHN Analyzer.

$$tBu_{3}^{\oplus} \xrightarrow{O}_{O-B(C_{6}F_{5})_{2}} + TMSOTf \xrightarrow{CH_{2}Cl_{2}} tBu_{3}^{\oplus} \xrightarrow{O}_{O-B(C_{6}F_{5})_{2}} + TMSOTf \xrightarrow{O}_{O-B(C_{6}F_{5})_{2}} \xrightarrow{O}_{O-B(C_{6}$$

Synthesis of $tBu_3P(CO_2)B(C_6F_5)_2(OSO_2CF_3)$ (2): A 20 mL scintillation vial was charged with $tBu_3P(CO_2)B(C_6F_5)_2CI$ (0.080 g, 0.128 mmol) and CH_2Cl_2 (5 mL). Me_3SiOSO_2CF_3 (23.1 µL, 0.128 mmol) was added to the clear and colourless solution in a dropwise fashion. The resulting reaction was left stirring for a period of one hour. At this time, the reaction was faintly yellow. All volatiles were then removed *in vacuo* yielding a white solid. The product was washed with hexanes (10 mL) and dried *in vacuo* for a period of one hour. Yield: 0.094 g (99 %). Crystals suitable for X-ray diffraction were grown from a layered solution of CH_2Cl_2 and hexanes. ¹H NMR (CD_2Cl_2): δ 1.68 (d, 27H, ³ $J_{H-P} = 15$ Hz, $P\{C(CH_3)_3\}$). ¹¹B{¹H} NMR (CD_2Cl_2): δ 3.76 (s). ¹³C{¹H} NMR (CD_2Cl_2): δ 162.08 (d, ¹ $J_{C-P} = 93$ Hz,

PCO₂); 148.48 (br d, ${}^{1}J_{C-F} = 245$ Hz, $o-C_{6}F_{5}$); 141.08 (br d, ${}^{1}J_{C-F} = 249$ Hz, $p-C_{6}F_{5}$); 137.62 (br d, ${}^{1}J_{C-F} = 249$ Hz, $m-C_{6}F_{5}$); 120.62 (s, OSO₂CF₃); 115.37 (br s, *ipso*-C₆F₅); 41.68 (d, ${}^{1}J_{C-P} = 19$ Hz, P{*C*(CH₃)}₃); 30.64 (s, P{C(CH₃)}₃). ${}^{19}F$ NMR (CD₂Cl₂): δ -78.59 (s, 3F, OSO₂CF₃); -134.40 (dd, 6F, ${}^{3}J_{F-F} = 23$ Hz, ${}^{4}J_{F-F} = 6.8$ Hz, $o-C_{6}F_{5}$); -157.34 (t, 3F, ${}^{3}J_{F-F} = 20$ Hz, $p-C_{6}F_{5}$); -164.94 (m, 6F, $m-C_{6}F_{5}$). ${}^{31}P{}^{1}H$ } NMR (CD₂Cl₂): δ 48.88 (d, ${}^{1}J_{P-C} = 93$ Hz). IR(KBr): v 1706 cm⁻¹ (C=O). Anal. Calcd. for C₂₆H₂₇BF₁₃O₅PS: C, 42.16; H, 3.68. Found: C, 41.67; H, 4.04 %.

$$tBu_{3}P \xrightarrow{O} O = B(C_{6}F_{5})_{2}CI \xrightarrow{O.5 \text{ tol } AI(C_{6}F_{5})_{3}} tBu_{3}P \xrightarrow{O} O = AI(C_{6}F_{5})_{3} + CIB(C_{6}F_{5})_{2}$$

Synthesis of ^{*t*}**Bu₃P**(**CO**₂)**A**(**C**₆**F**₅)₃ (3): A 20 mL scintillation vial was charged with *t*Bu₃**P**(**CO**₂)**B**(**C**₆**F**₅)₂**C**1 (0.080 g, 0.128 mmol) in bromobenzene (5 mL) while a second 20 mL vial was charged with 0.5tol·Al(**C**₆**F**₅)₃ (0.075 g, 0.129 mmol) in bromobenzene (5 mL). The second solution was added to the first in a dropwise fashion at room temperature. The reaction became faintly yellow upon addition. The resulting solution was stirred for 30 minutes. Following, the solution was divided amongst two 20 mL vials and pentane (15 mL) was added to each slowly precipitating a white solid. The product was allowed to settle and the supernatant was decanted. The material was washed with pentane (2 x 5 mL) and dried *in vacuo* for 30 minutes. Yield: 0.641 g (65 %). Crystals suitable for X-ray diffraction were grown from a layered solution of bromobenzene and cyclohexane. ¹H NMR (CD₂Cl₂): δ 1.65 (d, 27H, ³*J*_{H-P} = 14 Hz, P{C(CH₃)₃}). ¹³C{¹H} (CD₂Cl₂): δ 162.61 (d, ¹*J*_{P-C} = 89 Hz, PCO₂); 149.98 (br d, ¹*J*_{C-F} = 239 Hz, *o*-C₆F₅); 143.54 (br d, ¹*J*_{C-F} = 250 Hz, *p*-C₆F₅); 136.80 (br d, ¹*J*_{C-F} = 253 Hz, *m*-C₆F₅); 125.20 (br s, *ipso*-C₆F₅); 41.16 (d, ¹*J*_{C-F} = 20 Hz, P{*C*(CH₃)₃}); 30.74 (s, P{C(CH₃)₃). ¹⁹F NMR (CD₂Cl₂): δ -123.12 (m, 6F, *o*-C₆F₅); -155.83 (t, 3F, ³*J*_{F-F} = 19 Hz, *p*-C₆F₅); -163.39 (m, 6F, *m*-C₆F₅). ²⁷Al{¹H} NMR (CD₂Cl₂): silent. ³¹P{¹H} NMR (CD₂Cl₂): δ 46.65 (s). IR (KBr pellet): v 1686 cm⁻¹ (C=O). Anal. Calcd. for C₃₁H₂₇AlF₁₅O₂P: C, 48.08; H, 3.51. Found: C, 47.69; H, 3.60 %.

Synthesis of ${}^{t}Bu_{3}P({}^{13}CO_{2})Al(C_{6}F_{5})_{3}$ (3- ${}^{13}C$): A small scintillation vial was charged with ${}^{t}Bu_{3}P({}^{13}CO_{2})B(C_{6}F_{5})_{2}Cl$ (0.017 g, 0.027 mmol) and 0.5tol·Al(C₆F₅)₃ (0.016 g, 0.027 mmol) in C₆H₅Br (2 mL). The reaction was allowed to stir for five minutes before the addition of pentane (5 mL), precipitating a white solid. The product was washed with pentane (2 x 2 mL) and dried for ten minutes *in vacuo*. NMR was recorded in CD₂Cl₂. The spectroscopic ¹H, ¹³C, ¹⁹F and ²⁷Al NMR data were identical to those observed for ${}^{t}Bu_{3}P({}^{12}CO_{2})Al(C_{6}F_{5})_{3}$. ³¹P{¹H} (CD₂Cl₂): δ 47.72 (d, ¹J_{P-C} = 89 Hz).

Synthesis of $[{}^{t}Bu_{3}P(CO_{2})TiCp_{2}CI][B(C_{6}F_{5})_{4}]$ (4): A 20 mL scintillation vial was charged with Cp₂TiMe₂ (0.030 g, 0.144 mml) in bromobenzene (2 mL). A second 10 mL vial was charged with $[Ph_3C][B(C_6F_5)_4]$ (0.133 g, 0.144 mmol) in bromobenzene (5 mL). The solution of trityl borate was added to the titanocene solution yielding a deep red/brown reaction mixture, which was stirred for a further 5 minutes. At this time, dry $tBu_3P(CO_2)B(C_6F_5)_2CI$ (0.090 g, 0.144 mmol) was added and the resulting solution progressively lightened in colour to a vibrant red over a 30 second period of time. The reaction mixture was allowed to stir at room temperature for an hour after which the reaction was divided amongst two vials and hexanes (15 mL) were added to both fractions precipitating an orange solid. The hexanes were decanted and the resulting solid was washed with further hexanes (2 x 10 mL). The solvents were once again decanted and the solid was dried in vacuo for a period of 1 hour. Crystals suitable for X-ray diffraction were grown from a solution of CH_2Cl_2 layered with hexanes. Yield: 0.158 g (96 %). ¹H NMR (CD_2Cl_2): δ 6.65 (s, 10H, Cp); 1.66 (d, 27H, ${}^{3}J_{H-P} = 14$ Hz, P{C(CH₃)₃}). ${}^{11}B{}^{1}H{}$ NMR (CD₂Cl₂): δ -16.65 (s). ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂): δ 163.59 (d, ${}^{1}J_{C-P}$ = 86 Hz, PCO₂); 148.07 (br d, ${}^{1}J_{C-F}$ = 244 Hz, o-C₆F₅); 138.16 (br d, ${}^{1}J_{C-F}$ = 244 Hz, p- C_6F_5); 136.23 (br d, ${}^{I}J_{C-F} = 244$ Hz, $m-C_6F_5$); 124.65 (br s, *ipso-* C_6F_5); 120.53 (s, Cp); 41.56 (d, ${}^{I}J_{C-P} = 19$ Hz, P{ $C(CH_3)_3$ 30.97 (s, P{ $C(CH_3)_3$). ¹⁹F NMR (CD₂Cl₂): δ -133.02 (s, 8F, *o*-C₆F₅); -163.03 (t, 4F, ³J_{F-F} = 20 Hz, p-C₆F₅); 167.45 (m, 8F, m-C₆F₅). ³¹P{¹H} NMR (CD₂Cl₂): δ 49.09 (d, ¹J_{P-C} = 86 Hz). IR(KBr): v 1670 cm⁻¹ (C=O). Anal. Calcd. for $C_{47}H_{37}BF_{20}O_2PTi$: C, 49.54; H, 3.28. Found: C, 49.10; H, 3.20 %.

References:

- 1. G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett and A. Voigt, *J. Am. Chem. Soc.*, 1999, 121, 4922-4923.
- 2. G. J. Erskine, D. A. Wilson and J. D. McCowan, J. Organomet. Chem., 1976, 114, 119-125.
- 3. I. Peuser, R. C. Neu, X. Zhao, M. Ulrich, B. Schirmer, G. Kehr, R. Fröhlich, S. Grimme, G. Erker and D. W. Stephan, *Chem. Eur. J.*, 2011, 17, 9640-9650.