sp^2 C-H Activation of Dimethyl Fumarates by a [(Cp*Co)₂- μ -(η^4 : η^4 -toluene)] Complex

Fernando Hung-Low,^a Jesse W. Tye,^b Shannon Cheng,^a and Christopher A. Bradley^a*

chris.bradley@ttu.edu

^a Department of Chemistry and Biochemistry, Texas Tech University Box 41061, Lubbock, TX 79409-1061

^b Department of Chemistry, Ball State University, Muncie, IN 47306

Table of Contents

NMR spectra for 2	S3
NMR spectra for $2-d_2$	S4
NMR spectra for 3	S5
NMR spectra for 5	S6
¹ H NMR spectrum of 2 plus dimethyl fumarate	S 7
¹ H NMR spectrum of reaction of 1 with 5	S 7
¹ H NMR spectrum of reaction of 1 with 3	S 8
¹ H NMR spectrum of reaction of 3 with excess dimethyl fumarate	S 8
NMR spectra for 7	S 9
NMR spectra for 8	S10
Solution IR spectrum of 8	S11
NMR spectra of stoichiometric and catalytic reaction of 1 with dimethyl maleate	S12
Calculated molecular orbital diagrams and frontier molecular orbitals of 2	S13
Fully labeled views of the X-ray structure of 2	S14
Fully labeled view of the X-ray structure of 7	S15
Fully labeled view of the X-ray structure of 8	S16
Ball and stick representation of the connectivity structure of 5	S17
X-ray data tables for 2, 7, and 8	S18

Figure S1. a) ¹H (toluene- d_8) and b) ¹³C NMR spectra (benzene- d_6) of 2 recorded at 25 °C.

Figure S2. HMBC NMR spectrum of **2** in toluene- d_8 at -45 °C. Two and three bond coupling to the alkenyl and C=O carbons identify the vinylic C-H while lack of correlation supports assignment of the Co-H.

Figure S3. ¹H NMR spectrum of $2-d_2$ in toluene- d_8 at -45 °C.

Figure S4. ²H NMR spectrum of $2-d_2$ in toluene at -45 °C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S5. ¹H NMR spectrum of a mixture of **2** and **3** in toluene- d_8 at 25 °C. Only resonances for **3** are noted; the other peaks belong to **2**.

Figure S6. ¹³C NMR spectrum of a mixture of **2** and **3** in benzene- d_6 at 25 °C.

Figure S7. a) ¹H and b) ¹³C NMR spectrum of **5** in benzene- d_6 at 25 °C.

Figure S8. HMBC NMR spectrum of **5** in benzene- d_6 at 25 °C. Two and three bond coupling of the alkenyl hydrogens to the C=O carbons identify the presence of two vinylic hydrogens (shown in red).

Figure S9. ¹H NMR spectrum of addition of excess dimethyl fumarate to 2 in benzene- d_6 at 25 °C.

Figure S10. ¹H NMR spectrum of addition of 1 to 5 after 16 hours in benzene- d_6 at 25 °C.

Figure S11. ¹H NMR spectrum of addition of 1 to 3 after 16 hours in benzene- d_6 at 25 °C.

Figure S12. ¹H NMR spectrum of addition of excess dimethyl fumarate to a mixture of **3** and **2** after 15 minutes in benzene- d_6 at 25 °C.

Figure S13. ¹H NMR spectrum of **7** in benzene- d_6 at 25 °C.

Figure S14. ¹³C NMR spectrum of 7 in benzene- d_6 at 25 °C.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S15. ¹H NMR spectrum of **8** in benzene- d_6 at 25 °C.

Figure S16. ¹³C NMR spectrum of 8 in benzene- d_6 at 25 °C.

Figure S17. Solution IR spectrum of 8 recorded in pentane.

Figure S18. ¹H NMR spectrum of 1:1 reaction of **1** with dimethyl maleate in toluene- d_8 at 25 °C.

Figure S19. ¹H NMR spectrum of catalytic reaction of **1** with dimethyl maleate after heating for 3 hours in benzene- d_6 at 70 °C.

Figure S20. Frontier Kohn-Sham molecular orbital diagram of **2** as calculated using the Gaussian 09 program suite. Rendered at an isovalue of 0.03 e/ Å³ (e/Å³ = electrons per Angstrom cubed). Functional: B3LYP, Basis set: 6-31g(d',p') (C/O/H); LANL2DZ + F polarization (Co).

Figure S21. Molecular structure of **2** with 30 % probability ellipsoids and full atom labeling schemes. Hydrogen atoms omitted for clarity.

Figure S22. Molecular structure of **7** with 30 % probability ellipsoids and full atom labeling schemes. Hydrogen atoms omitted for clarity.

Figure S23. Molecular structure of 8 with 30 % probability ellipsoids and full atom labeling schemes. Hydrogen atoms omitted for clarity.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Compound	2	7	8
Empirical formula	$C_{26}H_{38}Co_2O_4$	$C_{19}H_{32}CoO_4P$	C ₁₇ H ₂₃ CoO ₅
Formula mass	532.42	414.35	366.28
<i>a</i> [Å]	9.2061(7)	14.986(4)	8.331(4)
b [Å]	10.7316(8)	14.019(4)	9.448(4)
c [Å]	13.5466(10)	9.855(3)	11.207(5)
α [°]	90.0490(10)	90	86.917(4)
β [°]	108.9940(10)	90	83.484(4)
γ [°]	95.4980(10)	90	78.249(4)
V [Å ³]	1258.93(16)	2070.3(10)	857.5(6)
Ζ	2	4	2
Crystal system	Triclinic	Orthorhombic	Triclinic
Space group	P-1	Pna2(1)	P-1
<i>T</i> [K]	150(2)	150(2)	150(2)
$D_{\text{calcd.}}$ [g cm ⁻³]	1.405	1.329	1.419
$\mu [{ m mm}^{-1}]$	1.346	0.925	1.022
2 <i>θ</i> _{max} . [°]	25.68	25.70	25.68
Reflections measured	12056	18967	6823
Reflections used (R _{int})	4749(0.0204)	3929(0.0546)	3218(0.0339)
Restraints/parameters	0/309	1/245	0/223
$R_1\left[l > 2\sigma(l)\right]$	0.0266	0.0296	0.0405
$wR_2[I > 2\sigma(I)]$	0.0671	0.0563	0.1064
$R(F_o^2)$ (all data)	0.0329	0.0379	0.0519
$R_{\rm w}(F_{\rm o}^{2})$ (all data)	0.0712	0.0597	0.1137
GOF on F^2	1.035	1.029	1 042

 Table 1. Crystallographic data for complexes 2, 7, and 8.

Further crystallographic information can be found on the Cambridge Structural Database (CSD) for **2** (CCDC #: 865144), **7** (CCDC #: 865145), and **8** (CCDC #: 865146).

Table 2. Bond lengths [Å] and angles [°] for 2.

Co(1)-C(21)	1.9055(19)
Co(1)-C(22)	2.0212(19)
Co(1)-C(4)	2.043(2)
Co(1)-C(5)	2.064(2)
Co(1) - C(1)	2.083(2)
$C_{0}(1) - C(2)$	2.100(2)
$C_{0}(1) = C(3)$	2.100(2)
$C_{0}(1) = C_{0}(2)$	2.104(2) 2.5705(4)
CO(1) = CO(2)	2.3793(4)
CO(1) - H(1H)	1.54(2)
Co(2) - C(21)	1.934/(19)
Co(2) - O(1)	2.0058(13)
Co(2) - C(13)	2.045(2)
Co(2)-C(15)	2.065(2)
Co(2)-C(14)	2.076(2)
Co(2)-C(12)	2.0812(19)
Co(2)-C(11)	2.084(2)
Co(2)-H(1H)	1.66(2)
O(1) - C(23)	1.256(2)
O(2) - C(23)	1 343(2)
O(2) - C(24)	1 442(2)
O(2) = O(25)	1, 442(2) 1, 210(2)
O(3) = C(23)	1,210(2) 1,273(2)
O(4) = C(25)	1.373(2)
O(4) - C(26)	1.430(2)
C(1) - C(5)	1.408(3)
C(1) - C(2)	1.443(3)
C(1)-C(6)	1.506(3)
C(2)-C(3)	1.410(3)
C(2)-C(7)	1.504(3)
C(3)-C(4)	1.419(3)
C(3)-C(8)	1.502(3)
C(4) - C(5)	1.440(3)
C(4) - C(9)	1.502(3)
C(5) - C(10)	1.503(3)
C(6) - H(6A)	0.9800
C(6) - H(6B)	0 9800
C(6) - H(6C)	0.9800
$C(0) = H(7\lambda)$	0.9800
$C(7) = \Pi(7A)$	0.9000
C(7) = H(7B)	0.9800
C(7) - H(7C)	0.9800
C(8) - H(8A)	0.9800
С(8)-Н(8В)	0.9800
С(8)-Н(8С)	0.9800
C(9)-H(9A)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
С(10)-Н(10А)	0.9800
С(10)-Н(10В)	0.9800
С(10)-Н(10С)	0.9800
C(11)-C(12)	1.408(3)
C(11) - C(15)	1,442(3)
C(11) - C(16)	1 495(3)
C(12) = C(13)	1 // 3 / 3)
$(\pm 2) = 0 (\pm 3)$	T.440(0)

C (12) - C (17) $C (13) - C (14)$ $C (13) - C (18)$ $C (14) - C (15)$ $C (14) - C (19)$ $C (15) - C (20)$ $C (16) - H (16A)$ $C (16) - H (16B)$ $C (16) - H (16C)$ $C (17) - H (17A)$ $C (17) - H (17A)$ $C (17) - H (17B)$ $C (18) - H (18A)$ $C (18) - H (18B)$ $C (18) - H (18B)$ $C (18) - H (18B)$ $C (19) - H (19B)$ $C (19) - H (19B)$ $C (19) - H (19C)$ $C (20) - H (20A)$ $C (20) - H (20B)$ $C (20) - H (20C)$ $C (21) - C (22)$ $C (21) - C (23)$ $C (22) - H (24A)$ $C (24) - H (24B)$ $C (24) - H (24B)$ $C (26) - H (26B)$	1.496(3) 1.427(3) 1.497(3) 1.497(3) 1.412(3) 1.499(3) 1.499(3) 1.493(3) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.456(3) 1.461(3) 1.418(3) 0.96(2) 0.9800 0
C(21) - Co(1) - C(22) $C(21) - Co(1) - C(4)$ $C(22) - Co(1) - C(4)$ $C(21) - Co(1) - C(5)$ $C(22) - Co(1) - C(5)$ $C(21) - Co(1) - C(1)$ $C(22) - Co(1) - C(1)$ $C(22) - Co(1) - C(1)$ $C(3) - Co(1) - C(1)$ $C(21) - Co(1) - C(2)$ $C(21) - Co(1) - C(2)$ $C(22) - Co(1) - C(2)$ $C(4) - Co(1) - C(2)$ $C(4) - Co(1) - C(2)$ $C(5) - Co(1) - C(2)$ $C(5) - Co(1) - C(2)$ $C(1) - Co(1) - C(3)$ $C(22) - Co(1) - C(3)$ $C(4) - Co(1) - C(3)$ $C(5) - Co(1) - C(3)$ $C(1) - Co(1) - C(3)$ $C(2) - Co(1) - C(3)$	43.41(8) 116.72(9) 97.54(9) 148.57(9) 108.86(9) 41.04(9) 170.94(9) 145.57(9) 67.46(9) 39.69(9) 132.30(9) 160.85(9) 66.96(9) 67.42(9) 40.36(9) 110.59(8) 121.66(9) 39.97(9) 67.69(8) 66.91(9) 39.19(9) 48.28(6)

C(22)-Co(1)-Co(2)	70.83(6)
C(4) - Co(1) - Co(2)	164.98(7)
C(5) - Co(1) - Co(2)	150.87(6)
C(1) - Co(1) - Co(2)	127.46(6)
C(2) = Co(1) = Co(2)	122 09(7)
C(3) = Co(1) = Co(2)	138 61 (6)
C(21) = Co(1) = U(1U)	150:01(0) 85 9(9)
C(21) = CO(1) = H(1H)	05.9(9)
C(22) = CO(1) = H(1H)	90.1(9)
C(4) = CO(1) = H(1H)	156.9(9)
C(5) - CO(1) - H(1H)	116.4(9)
C(1) - Co(1) - H(1H)	90.9(9)
C(2) - Co(1) - H(1H)	102.3(9)
С(3)-Со(1)-Н(1Н)	139.4(9)
Со(2)-Со(1)-Н(1Н)	37.8(9)
C(21) - Co(2) - O(1)	86.46(7)
C(21)-Co(2)-C(13)	111.69(8)
O(1)-Co(2)-C(13)	158.17(7)
C(21)-Co(2)-C(15)	128.28(8)
O(1)-Co(2)-C(15)	91.56(7)
C(13)-Co(2)-C(15)	67.87(8)
C(21)-Co(2)-C(14)	104.43(8)
O(1)-Co(2)-C(14)	125.18(7)
C(13)-Co(2)-C(14)	40.52(8)
C(15)-Co(2)-C(14)	39.88(8)
C(21)-Co(2)-C(12)	146.42(8)
O(1) - CO(2) - C(12)	125.41(7)
C(13) - Co(2) - C(12)	40.95(8)
C(15) - Co(2) - C(12)	67.45(8)
C(14) - Co(2) - C(12)	67.84(8)
C(21) - Co(2) - C(11)	168.84(8)
O(1) - CO(2) - C(11)	91.86(7)
C(13) - Co(2) - C(11)	67.94(8)
C(15) - Co(2) - C(11)	40 67 (8)
C(14) - CO(2) - C(11)	67 68 (8)
C(12) - CO(2) - C(11)	39 52 (8)
C(21) = CO(2) = CO(1)	47 32 (6)
O(1) - CO(2) - CO(1)	87 98 (4)
C(13) = CO(2) = CO(1)	113 10(6)
C(15) = CO(2) = CO(1)	175.60(6)
C(13) = CO(2) = CO(1)	173.00(0)
C(14) - CO(2) - CO(1)	130.10(0) 116.26(6)
C(12) = CO(2) = CO(1)	110.20(0)
C(11) - CO(2) - CO(1)	143./1(6)
C(21) - CO(2) - H(1H)	81.9(8)
O(1) - CO(2) - H(1H)	86.1(8)
C(13) - CO(2) - H(1H)	107.7(8)
C(15) - Co(2) - H(1H)	149.6(8)
C(14) - CO(2) - H(1H)	148.U(8)
C(12) - CO(2) - H(1H)	89.4(8)
C(11) - CO(2) - H(1H)	T09.0(8)
Co(1)-Co(2)-H(1H)	34./(8)
C(23)-O(1)-Co(2)	106.75(12)
C(23)-O(2)-C(24)	117.49(16)
C(25)-O(4)-C(26)	114.60(16)
C(5)-C(1)-C(2)	108.3(2)

C(5)-C(1)-C(6)	127.7(2)
C(2)-C(1)-C(6)	123.7(2)
C(5)-C(1)-Co(1)	69.43(12)
C(2)-C(1)-Co(1)	70.43(12)
C(6)-C(1)-Co(1)	130.72(16)
C(3)-C(2)-C(1)	108.0(2)
C(3) - C(2) - C(7)	125.8(2)
C(1) - C(2) - C(7)	125.6(2)
C(3) - C(2) - Co(1)	70.59(12)
C(1) - C(2) - Co(1)	69.21(12)
C(7) - C(2) - Co(1)	132.33(16)
C(2) - C(3) - C(4)	107.8(2)
C(2) - C(3) - C(8)	126.2(2)
C(4) - C(3) - C(8)	125.9(2)
C(2) - C(3) - Co(1)	70.23(12)
C(4) - C(3) - Co(1)	67.67(12)
C(8) - C(3) - Co(1)	130.04(16)
C(3) - C(4) - C(5)	108.6(2)
C(3) - C(4) - C(9)	125.4(2)
C(5) - C(4) - C(9)	125.8(2)
C(3) - C(4) - Co(1)	$72 \ 35(12)$
C(5) - C(4) - Co(1)	70 28(12)
C(9) - C(4) - Co(1)	126 71(16)
C(1) - C(5) - C(4)	107 14(19)
C(1) - C(5) - C(10)	$127 \ 3(2)$
C(4) - C(5) - C(10)	127.5(2) 125.6(2)
C(1) = C(5) = CO(1)	70 88(12)
C(4) - C(5) - Co(1)	68 68 (12)
C(10) = C(5) = Co(1)	126 52(15)
C(1) - C(6) - H(6A)	109 5
C(1) - C(6) - H(6B)	109.5
H(6A) = C(6) = H(6B)	109.5
C(1) - C(6) - H(6C)	109.5
H(6A) = C(6) = H(6C)	109.5
H(6R) = C(6) = H(6C)	109.5
C(2) - C(7) - H(7A)	109.5
C(2) = C(7) = H(7B)	109.5
H(7A) = C(7) = H(7B)	109.5
C(2) = C(7) = H(7C)	109.5
H(7A) = C(7) = H(7C)	109.5
H(7R) = C(7) = H(7C)	109.5
C(3) - C(8) - H(8A)	109.5
C(3) = C(8) = H(8R)	109.5
H(8A) = C(8) = H(8B)	109.5
C(3) = C(8) = H(8C)	109.5
H(8A) = C(8) = H(8C)	109.5
H(8R) = C(8) = H(8C)	109.5
C(4) - C(9) - H(9A)	109.5
C(4) = C(9) = H(9R)	109.5
H(QA) = C(Q) = H(QB)	109 5
C(4) = C(9) = H(9C)	109 5
$H(9\Delta) = C(9) = H(9C)$	109 5
H(9R) - C(9) - H(9C)	109 5
C(5) = C(10) = H(10A)	109 5
(0) (10) (10)	- U J . J

С(5)-С(10)-Н(10В)	109.5
H(10A)-C(10)-H(10B)	109.5
С(5)-С(10)-Н(10С)	109.5
H(10A)-C(10)-H(10C)	109.5
Н(10В)-С(10)-Н(10С)	109.5
C(12)-C(11)-C(15)	107.74(18)
C(12) - C(11) - C(16)	127.8(2)
C(15) - C(11) - C(16)	124.4(2)
C(12) - C(11) - CO(2)	70.12(11)
C(15) - C(11) - CO(2)	125 (11)
C(10) = C(11) = C(12) C(11) = C(12) = C(13)	123.01(13) 108 03(18)
C(11) - C(12) - C(13)	126 6(2)
C(13) - C(12) - C(17)	125.5(2) 125.3(2)
C(11) - C(12) - CO(2)	70.36(11)
C(13) - C(12) - Co(2)	68.16(11)
C(17) - C(12) - Co(2)	127.91(15)
C(14)-C(13)-C(12)	107.83(18)
C(14)-C(13)-C(18)	125.9(2)
C(12)-C(13)-C(18)	125.96(19)
C(14)-C(13)-Co(2)	70.93(11)
C(12)-C(13)-Co(2)	70.89(11)
C(18)-C(13)-Co(2)	128.86(15)
C(15) - C(14) - C(13)	107.81(18)
C(13) - C(14) - C(19)	125.6(2)
C(15) = C(14) = C(19)	120.4(2)
C(13) = C(14) = CO(2)	68 55(11)
C(19) - C(14) - Co(2)	131.17(14)
C(14) - C(15) - C(11)	108.51(18)
C(14)-C(15)-C(20)	126.6(2)
C(11)-C(15)-C(20)	124.9(2)
C(14)-C(15)-Co(2)	70.47(12)
C(11)-C(15)-Co(2)	70.38(11)
C(20)-C(15)-Co(2)	125.61(14)
С(11)-С(16)-Н(16А)	109.5
C(11) - C(16) - H(16B)	109.5
H(16A) - C(16) - H(16B)	109.5
U(11) - U(10) - H(100)	109.5
H(16R) = C(16) = H(16C)	109.5
C(12) - C(17) - H(17A)	109.5
C(12) - C(17) - H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5
С(12)-С(17)-Н(17С)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
С(13)-С(18)-Н(18А)	109.5
С(13)-С(18)-Н(18В)	109.5
H (18A) -C (18) -H (18B)	109.5
C(13) - C(18) - H(18C)	109.5
H(18R) = C(18) = H(18C) $H(18R) = C(18) = H(18C)$	109.5 109 5
C(14) = C(19) = H(192)	109.5
	± 0 J • 0

С(14)-С(19)-Н(19В)	109.5
H(19A)-C(19)-H(19B)	109.5
С(14)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5
Н(19В)-С(19)-Н(19С)	109.5
C(15)-C(20)-H(20A)	109.5
С(15)-С(20)-Н(20В)	109.5
H(20A)-C(20)-H(20B)	109.5
С(15) – С(20) – Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B) -C(20) -H(20C)	109.5
C(22) - C(21) - C(25)	121.42(17)
C(22) - C(21) - Co(1)	72.53(11)
C(25) - C(21) - Co(1)	118.86(13)
C(22) - C(21) - CO(2)	104 94(13)
C(25) - C(21) - Co(2)	132.07(14)
$C_{0}(1) = C(21) = C_{0}(2)$	84 39(8)
C(23) - C(22) - C(21)	114 25(17)
C(23) - C(22) - Co(1)	107 73(13)
C(23) = C(22) = Co(1)	64 06(10)
C(23) - C(22) - H(22)	120 0 (13)
C(23) = C(22) = H(22)	120.0(13) 121.7(13)
$C_{0}(1) = C(22) = H(22)$	121.7(13) 114.5(13)
O(1) = C(23) = O(2)	120.47(17)
O(1) = C(23) = C(22)	120.47(17) 122.14(17)
O(2) = C(23) = C(22)	122.14(17) 117.38(17)
O(2) = C(23) = C(24)	109 5
O(2) = C(24) = H(24R) O(2) = C(24) = H(24R)	109.5
U(24) = C(24) = U(24B)	109.5
O(2) = C(24) = U(24C)	109.5
U(24) = C(24) = H(24C)	109.5
n(24R) - C(24) - n(24C)	109.5
n(24B) - C(24) - n(24C)	109.5
O(3) = C(25) = O(4)	120.40(10) 127.22(10)
O(3) = C(23) = C(21)	127.32(19) 112.20(17)
O(4) - C(25) - C(21)	112.20(17)
O(4) - C(26) - H(26A)	109.5
$U(26\lambda) = C(26) = H(26B)$	109.J
n(20A) - C(20) - n(20B)	109.5
U(4) = U(26) = H(26U)	109.5
H(2bA) = U(2b) = H(2bU)	109.5
н (268) -С (26) -Н (26С)	109.5

Table 3. Bond lengths [Å] and angles [°] for 7.

Co(1)-C(11)	2.008(2)
Co(1)-C(12)	2.029(3)
Co(1)-C(3)	2.097(3)
Co(1) - C(4)	2.103(3)
Co(1) - C(2)	2.104(3)
$C_{0}(1) - C(1)$	2.119(3)
$C_{0}(1) - C(5)$	2 127(3)
$C_0(1) - P(1)$	2 1969(10)
O(1) - C(13)	1 210(3)
O(2) - C(13)	1,210(3) 1,353(3)
O(2) - C(14)	1 442(3)
O(2) = O(15)	1, 217(3)
O(4) - C(15)	1,217(3) 1,359(3)
O(4) = C(16)	1,39(4)
P(1) = C(18)	1,439(4) 1,822(3)
P(1) = C(10)	1.022(3)
P(1) = C(19) P(1) = C(17)	1.032(3)
P(1) = C(17)	1.033(3)
C(1) - C(3)	1.414(4)
C(1) - C(2)	1.445(4)
C(1) - C(6)	1.504(4)
C(2) = C(3)	1.416(4)
C(2) = C(7)	1.511(4)
C(3) - C(4)	1.441(4)
C(3) - C(8)	1.500(4)
C(4) - C(5)	1.420(4)
C(4) - C(9)	1.500(4)
C(5) - C(10)	1.507(4)
C(6) - H(6A)	0.9800
C(6) - H(6B)	0.9800
C(6) - H(6C)	0.9800
C(7) - H(7A)	0.9800
C(7) - H(7B)	0.9800
C(7) - H(7C)	0.9800
C(8) - H(8A)	0.9800
С (8) – Н (8В)	0.9800
С (8) – Н (8С)	0.9800
С (9) – Н (9А)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
С(10)-Н(10А)	0.9800
С(10)-Н(10В)	0.9800
С(10)-Н(10С)	0.9800
C(11)-C(12)	1.437(4)
C(11)-C(15)	1.458(4)
С(11)-Н(11)	0.89(3)
C(12) - C(13)	1.464(4)
С(12)-Н(12)	0.97(2)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
С(14)-Н(14С)	0.9800

C $(11) - Co (1) - C (12)$ 41.69 (12)C $(11) - Co (1) - C (3)$ 104.59 (13)C $(12) - Co (1) - C (4)$ 91.96 (13)C $(12) - Co (1) - C (4)$ 108.57 (10)C $(3) - Co (1) - C (4)$ 40.12 (11)C $(11) - Co (1) - C (2)$ 142.62 (13)C $(12) - Co (1) - C (2)$ 171.03 (11)C $(3) - Co (1) - C (2)$ 171.03 (11)C $(3) - Co (1) - C (2)$ 93.99 (11)C $(4) - Co (1) - C (2)$ 66.10 (11)C $(11) - Co (1) - C (1)$ 154.78 (13)C $(12) - Co (1) - C (1)$ 66.96 (11)C $(4) - Co (1) - C (1)$ 66.00 (11)C $(12) - Co (1) - C (1)$ 66.00 (11)C $(12) - Co (1) - C (1)$ 105.25 (11)C $(12) - Co (1) - C (5)$ 105.25 (11)C $(2) - Co (1) - C (5)$ 66.71 (10)C $(2) - Co (1) - C (5)$ 39.23 (10)C $(2) - Co (1) - C (5)$ 38.91 (10)C $(11) - Co (1) - C (5)$ 38.91 (10)C $(11) - Co (1) - P (1)$ 100.69 (10)C $(12) - Co (1) - P (1)$ 104.13 (8)C $(3) - Co (1) - P (1)$ 104.13 (8)C $(13) - C (2) - C (14)$ 116.5 (2)C $(15) - C (1) - P (1)$ 102.72 (14)C $(18) - P (1) - C (17)$ 101.94 (14)C $(18) - P (1) - C (17)$ 101.94 (14)C $(18) - P (1) - C (17)$ 113.32 (10)C $(18) - P (1) - C (1)$ 113.32 (10)	C (16) -H (16A) C (16) -H (16B) C (16) -H (16C) C (17) -H (17A) C (17) -H (17B) C (17) -H (17C) C (18) -H (18A) C (18) -H (18B) C (18) -H (18B) C (19) -H (19A) C (19) -H (19B) C (19) -H (19C)	0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800
C(19) - P(1) - CO(1) $118.34(10)$ $C(17) - P(1) - CO(1)$ $120.72(10)$ $C(5) - C(1) - C(2)$ $107.3(2)$ $C(5) - C(1) - C(6)$ $125.5(3)$ $C(2) - C(1) - C(6)$ $126.4(2)$ $C(5) - C(1) - CO(1)$ $70.84(15)$	C (11) - Co (1) - C (12) C (11) - Co (1) - C (3) C (12) - Co (1) - C (3) C (11) - Co (1) - C (4) C (12) - Co (1) - C (4) C (11) - Co (1) - C (2) C (12) - Co (1) - C (2) C (12) - Co (1) - C (2) C (11) - Co (1) - C (1) C (12) - Co (1) - C (1) C (12) - Co (1) - C (1) C (12) - Co (1) - C (1) C (1) - Co (1) - C (1) C (1) - Co (1) - C (1) C (1) - Co (1) - C (5) C (12) - Co (1) - C (5) C (1) - Co (1) - P (1) C (2) - Co (1) - P (1) C (1) - Co (1) - P (1) C (13) - O (2) - C (14) C (15) - O (4) - C (16) C (18) - P (1) - C (17) C (19) - P (1) - C (1) C (17) - P (1) - C (1) C (17) - P (1) - C (1) C (2) - C (1) - C (2) C (5) - C (1) - C (6) C (2) - C (1) - C (6) C (2) - C (1) - C (1)	$\begin{array}{c} 41.69(12)\\ 104.59(13)\\ 140.37(12)\\ 91.96(13)\\ 108.57(10)\\ 40.12(11)\\ 142.62(13)\\ 171.03(11)\\ 39.39(11)\\ 66.10(11)\\ 154.78(13)\\ 131.77(11)\\ 66.96(11)\\ 66.00(11)\\ 40.01(10)\\ 115.97(12)\\ 105.25(11)\\ 66.71(10)\\ 39.23(10)\\ 65.97(10)\\ 38.91(10)\\ 100.69(10)\\ 92.52(8)\\ 118.65(8)\\ 158.21(7)\\ 93.64(8)\\ 104.13(8)\\ 140.73(8)\\ 116.5(2)\\ 117.0(2)\\ 102.72(14)\\ 101.94(14)\\ 96.79(14)\\ 113.32(10)\\ 118.34(10)\\ 120.72(10)\\ 107.3(2)\\ 125.5(3)\\ 126.4(2)\\ 70.84(15)\\ \end{array}$

C(6)-C(1)-Co(1)	132.9(2)
C(3)-C(2)-C(1)	108.8(2)
C(3)-C(2)-C(7)	123.5(3)
C(1)-C(2)-C(7)	126.2(3)
C(3)-C(2)-Co(1)	70.02(15)
C(1)-C(2)-Co(1)	70.55(14)
C(7)-C(2)-Co(1)	136.5(2)
C(2)-C(3)-C(4)	106.9(2)
C(2)-C(3)-C(8)	126.7(3)
C(4)-C(3)-C(8)	126.2(3)
C(2)-C(3)-Co(1)	70.60(16)
C(4)-C(3)-Co(1)	70.17(15)
C(8)-C(3)-Co(1)	128.0(2)
C(5) - C(4) - C(3)	108.5(2)
C(5) - C(4) - C(9)	125.8(2)
C(3) - C(4) - C(9)	125.3(3)
C(5) - C(4) - Co(1)	71.29(15)
C(3) - C(4) - Co(1)	69.70(15)
C(9) - C(4) - Co(1)	130.30(19)
C(1) - C(5) - C(4)	108.4(2)
C(1) - C(5) - C(10)	125.2(3)
C(4) - C(5) - C(10)	126.1(3)
C(1) - C(5) - CO(1)	70.20(10)
C(4) = C(5) = CO(1)	131 02(10)
C(10) - C(3) - CO(1)	100 5
C(1) - C(6) - H(6R)	109.5
H(6A) = C(6) = H(6B)	109.5
C(1) - C(6) - H(6C)	109.5
H(6A) = C(6) = H(6C)	109.5
H(6R) = C(6) = H(6C)	109.5
C(2) - C(7) - H(7A)	109.5
C(2) - C(7) - H(7B)	109.5
H(7A) - C(7) - H(7B)	109.5
C(2) - C(7) - H(7C)	109.5
H(7A) - C(7) - H(7C)	109.5
H (7B) -C (7) -H (7C)	109.5
С(3)-С(8)-Н(8А)	109.5
С(3)-С(8)-Н(8В)	109.5
H(8A)-C(8)-H(8B)	109.5
С(3)-С(8)-Н(8С)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
С(4)-С(9)-Н(9А)	109.5
С(4)-С(9)-Н(9В)	109.5
H(9A)-C(9)-H(9B)	109.5
С(4)-С(9)-Н(9С)	109.5
H(9A)-C(9)-H(9C)	109.5
H (9B) - C (9) - H (9C)	109.5
С(5)-С(10)-Н(10А)	109.5
C(5)-C(10)-H(10B)	109.5
H(10A) - C(10) - H(10B)	109.5
C(5) - C(10) - H(10C)	109.5
H(IUA)-C(IU)-H(IOC)	109.5

Н(10В)-С(10)-Н(10С)	109.5
C(12)-C(11)-C(15)	125.0(3)
C(12)-C(11)-Co(1)	69.96(15)
C(15)-C(11)-Co(1)	116.97(18)
С(12)-С(11)-Н(11)	115.3(17)
С(15)-С(11)-Н(11)	113.1(16)
Co(1)-C(11)-H(11)	108.0(16)
C(11)-C(12)-C(13)	119.8(2)
C(11)-C(12)-Co(1)	68.35(14)
C(13)-C(12)-Co(1)	117.54(19)
С(11)-С(12)-Н(12)	118.0(14)
С(13)-С(12)-Н(12)	113.8(14)
Co(1)-C(12)-H(12)	111.4(14)
O(1)-C(13)-O(2)	121.8(3)
O(1)-C(13)-C(12)	126.9(3)
O(2)-C(13)-C(12)	111.3(2)
O(2)-C(14)-H(14A)	109.5
O(2)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
O(2)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(3)-C(15)-O(4)	122.1(3)
O(3)-C(15)-C(11)	128.3(3)
O(4) - C(15) - C(11)	109.6(3)
O(4)-C(16)-H(16A)	109.5
O(4)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
O(4) - C(16) - H(16C)	109.5
H(16A) - C(16) - H(16C)	109.5
H(16B) - C(16) - H(16C)	109.5
P(1) - C(17) - H(17A)	109.5
P(I) = C(I/) = H(I/B)	109.5
H(I/A) - C(I/) - H(I/B)	109.5
P(1) = C(17) = H(17C)	109.5
H(1/A) = C(1/) = H(1/C) H(1/B) = C(1/C) = H(1/C)	109.5
$\Pi(1/B) = C(1/) = \Pi(1/C)$ $\Pi(1) = C(19) = \Pi(193)$	109.5
P(1) = C(10) = H(10A) D(1) = C(10) = H(10B)	109.5
P(1) = C(10) = n(100) u(100) = C(10) = u(100)	109.5
P(1) = C(18) = H(18C)	109.5
H(18A) = C(18) = H(18C)	109.5
H(18R) = C(18) = H(18C)	109.5
P(1) = C(19) = H(192)	109.5
P(1) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5
P(1) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5
H(19B) -C(19) -H(19C)	109.5

Table 4. Bond lengths [Å] and angles [°] for 8.

Co(1)-C(17)	1.748(3)
Co(1)-C(11)	2.011(3)
Co(1)-C(12)	2.030(3)
Co(1)-C(4)	2.070(3)
Co(1)-C(5)	2.088(3)
Co(1)-C(1)	2.090(3)
Co(1) - C(3)	2.092(3)
$C_{0}(1) - C(2)$	2.121(3)
O(1) - C(13)	1.212(4)
O(2) - C(13)	1 350(4)
O(2) - C(14)	1 445(3)
O(3) - C(15)	1 205(4)
O(4) - C(15)	1 355(3)
O(4) - C(16)	1,333(3) 1,447(4)
O(5) - C(17)	1 145(4)
C(1) - C(2)	1, 140(4) 1, 131(4)
C(1) = C(5)	1 /38(/)
C(1) = C(5)	1 403(4)
C(1) - C(0)	1.493(4)
C(2) = C(3)	1.414(4) 1.504(4)
C(2) = C(1)	1.304(4)
C(3) - C(4)	1.440(4) 1.407(4)
C(3) - C(8)	1.497(4) 1.410(F)
C(4) - C(5)	1.410(5)
C(4) - C(9)	1.513(4)
C(5) - C(10)	1.504(4)
C(6) - H(6A)	0.9800
C(6) - H(6B)	0.9800
C(6)-H(6C)	0.9800
С(/)-Н(/А)	0.9800
С(7)-Н(7В)	0.9800
С(7)-Н(7С)	0.9800
C(8)-H(8A)	0.9800
С(8)-Н(8В)	0.9800
С(8)-Н(8С)	0.9800
С(9)-Н(9А)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
С(10)-Н(10С)	0.9800
C(11)-C(12)	1.427(4)
C(11)-C(15)	1.471(4)
С(11)-Н(11)	0.98(3)
C(12)-C(13)	1.474(4)
С(12)-Н(12)	1.00(3)
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(16)-H(16A)	0.9800
С(16)-Н(16В)	0.9800
С(16)-Н(16С)	0.9800

C(17)-Co(1)-C(11)	99.43(13)
C(17) - Co(1) - C(12)	91.39(13)
C(11) - Co(1) - C(12)	41.33(11)
C(17) - CO(1) - C(4)	92 64 (13)
C(11) - CO(1) - C(4)	139 57(12)
C(12) - CO(1) - C(4)	175 48(11)
C(12) = CO(1) = C(4)	1/3.40(11)
C(17) - CO(1) - C(3)	123.10(14)
C(11) = CO(1) = C(5)	104.39(13)
C(12) = CO(1) = C(5)	138.17(13)
C(4) - CO(1) - C(5)	39.65(13)
C(17) - Co(1) - C(1)	159.66(13)
C(11) - Co(1) - C(1)	97.23(12)
C(12) - Co(1) - C(1)	108.86(12)
C(4) - Co(1) - C(1)	67.06(12)
C(5)-Co(1)-C(1)	40.27(12)
C(17)-Co(1)-C(3)	97.41(13)
C(11)-Co(1)-C(3)	163.08(12)
C(12)-Co(1)-C(3)	136.79(11)
C(4)-Co(1)-C(3)	40.47(11)
C(5)-Co(1)-C(3)	67.15(12)
C(1)-Co(1)-C(3)	66.67(11)
C(17)-Co(1)-C(2)	132.27(13)
C(11) - Co(1) - C(2)	124.53(12)
C(12) - Co(1) - C(2)	108.82(11)
C(4) - Co(1) - C(2)	66.87(11)
C(5) - Co(1) - C(2)	67.00(12)
C(1) - CO(1) - C(2)	39 71 (11)
C(3) - Co(1) - C(2)	39 21(10)
C(13) = O(2) = C(14)	116 3(2)
C(15) = O(4) = C(16)	114.6(2)
C(13) = C(1) = C(5)	108 2(3)
C(2) = C(1) = C(3)	125 8(3)
C(2) = C(1) = C(0)	125.0(3)
C(3) - C(1) - C(0)	12J.7(J)
C(2) - C(1) - CO(1)	(1.31(17))
C(3) - C(1) - CO(1)	69.79(18)
C(6) - C(1) - CO(1)	129.8(2)
C(3) - C(2) - C(1)	107.8(2)
C(3) - C(2) - C(7)	126.6(3)
C(1) - C(2) - C(7)	125.5(3)
C(3) - C(2) - Co(1)	69.29(16)
C(1) - C(2) - Co(1)	68.98(16)
C(7) - C(2) - Co(1)	130.0(2)
C(2)-C(3)-C(4)	108.1(3)
C(2)-C(3)-C(8)	126.7(3)
C(4)-C(3)-C(8)	124.8(3)
C(2)-C(3)-Co(1)	71.50(16)
C(4)-C(3)-Co(1)	68.92(16)
C(8)-C(3)-Co(1)	130.5(2)
C(5)-C(4)-C(3)	108.4(3)
C(5)-C(4)-C(9)	127.0(3)
C(3)-C(4)-C(9)	124.4(3)
C(5)-C(4)-Co(1)	70.88(18)
C(3) - C(4) - Co(1)	70.61(16)
C(9) - C(4) - Co(1)	128.1(2)
	. ,

C(4)-C(5)-C(1)	107.5(3)
C(4) - C(5) - C(10)	125.9(3)
C(1) - C(5) - C(10)	126.6(3)
C(4) - C(5) - Co(1)	69.47(18)
C(1) - C(5) - Co(1)	69 94 (18)
C(10) = C(5) = Co(1)	126 4(2)
C(10) = C(5) = U(6)	100 5
C(1) - C(0) - H(0A)	109.5
U(1) - U(0) - H(0B)	109.5
H(6A) - C(6) - H(6B)	109.5
C(1) - C(6) - H(6C)	109.5
H(6A) - C(6) - H(6C)	109.5
Н (6В) -С (6) -Н (6С)	109.5
С(2)-С(7)-Н(7А)	109.5
С(2)-С(7)-Н(7В)	109.5
H(7A)-C(7)-H(7B)	109.5
С(2)-С(7)-Н(7С)	109.5
Н(7А)-С(7)-Н(7С)	109.5
H(7B)-C(7)-H(7C)	109.5
С(3)-С(8)-Н(8А)	109.5
С(3)-С(8)-Н(8В)	109.5
H (8A) -C (8) -H (8B)	109.5
С(3)-С(8)-Н(8С)	109.5
H(8A) - C(8) - H(8C)	109.5
H(8B) - C(8) - H(8C)	109.5
C(4) - C(9) - H(9A)	109 5
C(4) - C(9) - H(9B)	109 5
H(9A) - C(9) - H(9B)	109 5
C(4) - C(9) - H(9C)	109 5
H(92) - C(9) - H(9C)	109 5
H(9R) = C(9) = H(9C)	109.5
C(5) - C(10) - H(10A)	109.5
C(5) = C(10) = H(10R)	109.5
$U(10\lambda) = C(10) = H(10D)$	109.5
H(10A) = C(10) = H(10B)	109.5
U(102) = U(10) = H(100)	109.5
H(10A) = C(10) = H(10C)	109.5
H(10B) = C(10) = H(10C)	109.5
C(12) - C(11) - C(15)	119.6(3)
C(12) - C(11) - CO(1)	/0.06(16)
C(15) - C(11) - Co(1)	112.0(2)
C(12) - C(11) - H(11)	119.0(17)
С(15)-С(11)-Н(11)	115.7(17)
Co(1)-C(11)-H(11)	110.6(17)
C(11)-C(12)-C(13)	121.2(3)
C(11)-C(12)-Co(1)	68.61(16)
C(13)-C(12)-Co(1)	116.7(2)
С(11)-С(12)-Н(12)	117.8(17)
С(13)-С(12)-Н(12)	113.9(17)
Со(1)-С(12)-Н(12)	110.2(17)
O(1)-C(13)-O(2)	122.8(3)
O(1)-C(13)-C(12)	127.6(3)
O(2)-C(13)-C(12)	109.5(3)
O(2)-C(14)-H(14A)	109.5
O(2)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5

O(2)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5
O(3)-C(15)-O(4)	122.6(3)
O(3)-C(15)-C(11)	126.3(3)
O(4)-C(15)-C(11)	111.1(3)
O(4)-C(16)-H(16A)	109.5
O(4)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
О(4)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
O(5)-C(17)-Co(1)	175.8(3)