Aluminum complexes of the redox-active [ONO] pincer ligand

Géza Szigethy, Alan F. Heyduk*

Department of Chemistry, University of California, Irvine, California 92697, USA

Supporting Information

Contents

- **Figure S1.** UV-vis-NIR spectra of [ONOq]Al(acacPh$_2$)Cl (2) and [ONOsq]Al(acacPh$_2$)(py) (4). S2
- 1H and 13C{1H} NMR spectra of diamagnetic complexes 1a, 1b, 2, and 3 S2
- Crystallographic refinement details for complexes 1b, 2, 6, and 8 S7
Figure S1. UV-vis-NIR spectra of [ONOaq]Al(acacPh\textsubscript{2})Cl (2) and [ONOaq]Al(acacPh\textsubscript{2})(py) (4) in C\textsubscript{6}H\textsubscript{6} at 298 K.

Supplemental 1H and 13C\{1H\} NMR Spectra of Diamagnetic Compounds
NMR spectra were collected with Bruker Avance 500 MHz spectrometers (1H 500 MHz, 13C 128 MHz) in either C\textsubscript{6}D\textsubscript{6} or CD\textsubscript{3}CN solvents that were degassed by several freeze-pump-thaw cycles, dried with sodium benzophenone ketyl radical or CaH\textsubscript{2}, respectively, and vacuum-distilled before use. 1H and 13C\{1H\} NMR spectra were referenced to the residual 1H and 13C impurities in the solvent (7.15 and 128.02 for C\textsubscript{6}D\textsubscript{6}; 1.94 and 1.24 for CD\textsubscript{3}CN, respectively). NMR spectra were measured at 298 K and chemical shifts are reported by using the standard \(\delta\) notation in parts per million.
[ONHOcat]HAICl(OEt$_2$) (1a): 1H NMR (C$_6$D$_6$):
[ONHOcat]\textit{AlBr(THF)} (1b): \textit{^1H} NMR (C\textsubscript{6}D\textsubscript{6}):

\textbf{C\textsubscript{6}D\textsubscript{6}}

\textit{^13C} {\textit{^1H}} NMR (C\textsubscript{6}D\textsubscript{6}):

\textbf{C\textsubscript{6}D\textsubscript{6}}
[ONO6]Al(acacPh\textsubscript{2})Cl (2): 1H NMR (C\textsubscript{6}D\textsubscript{6}):

\[\text{13C}\{\text{1H}\} \text{ NMR (C\textsubscript{6}D\textsubscript{6}):} \]
[ONO⁹]Al(quinO)Cl (3): ¹H NMR (C₆D₆):

¹³C{¹H} NMR (C₆D₆):
Crystallographic Refinement Details

* [ONHO*-*]AlBr(THF) (1b):* A hemisphere of data was collected on a colorless plate of approximate dimensions 0.57 × 0.17 × 0.10 mm using a 25 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P2₁/n that was later determined to be correct.

* [ONO*]Al(acacPh₂)Cl (2):* A hemisphere of data was collected on a black prism of dimensions 0.38 × 0.20 × 0.19 mm using a 45 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P2₁/n that was later determined to be correct.

* [ONO]Al(o-O₂C₆H₆Cl₄)(py) (6):* A hemisphere of diffraction data was collected on a black block of dimensions 0.20 × 0.12 × 0.10 mm using a 60 sec/frame scan time. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group P2₁/c that was later determined to be correct. There was a pocket of disordered solvent that was positioned across an inversion center. Although diethyl-ether molecules could be seen in this disorder, modeling them using standard modeling procedures was not very stable. Additionally, the largest Q-peak was directly on the inversion center too far from another atom to be included in reasonable disorder modeling. Thus, the program SQUEEZE¹ by Spek et. a. in the PLATON² software suite was used to calculate the electron count in this solvent pocket at 69 electrons. This corresponds roughly to 1.5 diethyl-ether molecules, resulting in a total of 3 disordered ether molecules per unit cell, consistent with the disorder observed in the structure during initial refinement.

* [ONO]Al(o-O₂C₁₆H₈)(py) (8):* A hemisphere of diffraction data was collected on a black plate of dimensions 0.27 × 0.18 × 0.06 mm using a 35 sec/frame scan time. The diffraction
symmetry was 2/m and the systematic absences were consistent with the monoclinic space group \(P2_1/c \) that was later determined to be correct. One of the two THF molecules was disordered over two positions with a freely-refined occupancy of 65:35, and was modeled using standard distance restraints.

References