Supporting Information to “Encapsulating [FeFe]-hydrogenase model compounds in peptide hydrogels dramatically modifies stability and photochemistry”

Pim W. J. M. Frederix,1,2 Rafal Kania,1 Joseph A. Wright,3 Dimitrios A. Lampropoulou,4 Rein V. Ulijn,2* Christopher J. Pickett3* and Neil T. Hunt1*

Full reference 48:

Figure S1. Comparison between a fresh (2 hours) and 13 day-old gel sample containing (μ-
S(CH₂)₃S)Fe₂(CO)₄(PMe₃)₂
Figure S2. Comparison of FTIR spectra for (μ-S(CH$_2$)$_3$S)Fe$_2$(CO)$_4$(PMe$_3$)$_2$ in the gel phase, in the pre-gel solution (without Fmoc-LL gelator) and the gel without the metal carbonyl. Dramatic line broadening is observed for the carbonyl stretch region in the pre-gel solution. However, this solution is unstable and precipitates out completely within 20 minutes of preparation by sonication.
Figure S3. Peak heights in the amide I (~1600-1700 cm\(^{-1}\)) and CO stretch region (~1850-2050 cm\(^{-1}\)) of the IR spectrum for \((\mu-S(CH_2)_3S)Fe_2(CO)_4(PMe_3)_2\) in the gel phase. The decrease in the CO region occurs at a different temperature from the decrease in the amide I region. The peak at 1590 cm\(^{-1}\) is attributed to COO\(^-\) absorption from the deprotonated C-termini of Fmoc-LL.
Figure S4. Fluorescence emission spectra of an Fmoc-LL hydrogel at various temperatures. The dashed line represents the emission in methanol at 20 °C. The inset shows the intensity at 386 nm as function of temperature.