Supporting Information

Photophysical and Electrochemical Properties of Platinum(II)
Complexes Bearing a Chromophore-Acceptor Dyad and their
Photocatalytic Hydrogen Evolution

Gui-Ju Zhang, Xin Gan, Quan-Qing Xu, Yong Chen, Xi-Juan Zhao, Biao Qin, Xiao-Jun Lv, Siu-Wai Lai, Wen-Fu Fu, and Chi-Ming Che

aKey Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Peking 100190, P.R. China
bCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650092, P.R. China
cDepartment of Chemistry, Institute of Molecular Functional Materials and CAS-HKU Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P.R. China

Fig. S1. Transient absorption spectra of complex 2 in CH3CN (λexc = 355 nm) at room temperature.
Fig. S2. Transient absorption spectra of complex 3 in CH$_3$CN ($\lambda_{\text{exc}} = 355$ nm) at room temperature.

Fig. S3. Transient absorption spectra of complex 4 in CH$_3$CN ($\lambda_{\text{exc}} = 355$ nm) at room temperature.
Fig. S4. Emission spectral changes of 1 (1.3 × 10⁻⁵ M) in degassed CH₃CN/H₂O (v/v, 1:1) at room temperature as a function of the colloidal Pt concentration. Inset: Stern-Volmer plot for emission quenching of 1.

Fig. S5. Emission spectral changes of 9 (2.0 × 10⁻⁵ M) in degassed CH₃CN/H₂O (v/v, 1:1) at room temperature as a function of the colloidal Pt concentration. Inset: Stern-Volmer plot for emission quenching of 9.
Fig. S6. Time-resolved emission spectra of complex 3 (2.5 × 10^{-5} M) with excitation at 355 nm in the mixed CH_{3}CN/H_{2}O (v/v, 1:1) in the absence of Pt nanoparticles (4.3 × 10^{-5} M).

Fig. S7. Changes in the absorption spectra of 5 (3.3 × 10^{-5} M) in acetonitrile upon addition of various concentrations of TEOA (0–2.1 × 10^{-1} M).
Fig. S8. 1H NMR spectra of complexes 2–5 in DMSO-d_6.

10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0

δ_H / ppm
Fig. S9. 1H NMR spectra of complexes 2–5 in DMSO-d_6/D$_2$O (v/v, 2:1), in the presence of excessive amounts of TEOA.
Fig. S10. Hydrogen production from system containing TEOA (2.2 × 10^{-2} M), complexes 6–8 (4.4 × 10^{-5} M) and colloidal Pt (8.7 × 10^{-5} M) in CH$_3$CN/H$_2$O (v/v, 1:1) upon irradiation (λ > 390 nm) at pH 7.0. TONs are calculated based on the Pt(II) chromophore.