Lanthanide(III) 2-Naphthoxide Complexes Stabilized by

Interligand Non-Covalent Interactions

Jessica R. Levin, Patrick J. Carroll, Jun Gu, and Eric J. Schelter*

schelter@sas.upenn.edu

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104

Electronic Supplementary Information

S2–S4	
S4–S8	
S8-S9	
S 9	
S 10	
S 10	
S 11	
S11	
S12	
Figure S7. ¹ H NMR spectrum of [HTMG] ₃ [Ce ₂ (naphO) ₉] (3) crystallized from DME collected	
S12	
cted in	
S13	
S13	
S 14	
S 14	
\$15	
\$15	
S16	
S17	
S17	
S18	
510	

Experimental Procedures

General Methods. Unless otherwise indicated all reactions and manipulations were performed under an inert atmosphere (N₂) using standard Schlenk techniques or in a Vacuum Atmospheres, Inc. Nexus II drybox equipped with a molecular sieves 13X / Q5 Cu-0226S catalyst purifier system. Glassware was oven-dried overnight at 150 °C prior to use. ¹H, ¹³C, and ⁷Li NMR spectra were obtained on a Bruker DMX-300, on a Bruker DMX-360, or on a Bruker DRX-400 Fourier transform NMR spectrometer at 300, 360, and 400 MHz respectively. Chemical shifts were recorded in units of parts per million downfield from residual proteo solvent peaks (¹H), or characteristic solvent peaks (¹³C{¹H}). The ⁷Li{¹H} spectra were referenced to external solution standards of LiCl in H₂O. Elemental analyses were performed at the University of California, Berkeley Microanalytical Facility using a Perkin-Elmer Series II 2400 CHNS analyzer.

Materials. Tetrahydrofuran, dimethoxyethane, toluene, fluorobenzene, hexane, and pentane were purchased from Fisher Scientific. The solvents were sparged for 20 min with dry N₂ and dried using a commercial two-column solvent purification system comprising columns packed with Q5 reactant and neutral alumina respectively (for hexane and pentane), or two columns of neutral alumina (for THF and toluene). Pyridine was freeze-pump-thawed for 4 cycles and stored over 4 Å molecular sieves for three days before use. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. CDCl₃ was freeze-pump-thawed for 4 cycles and stored over 4 Å molecular sieves for three days before use. Pyridine- d_5 was stored over 4 Å molecular sieves for three days before use. Pyridine- d_5 was stored over 4 Å molecular sieves for three days before use. The starting materials: Ln[N(SiMe₃)₂]₃ (Ln = La, Ce) were prepared following published procedures.¹ Ce(OTf)₃ was dried under vacuum at 150 °C for 12 hours. Li[N(SiMe₃)₂] (Acros) was recrystallized from hot pentane prior to use. 2naphthol (Acros, Sigma Aldrich) was sublimed under reduced pressure prior to use. Lithium *tert*butoxide was purchased from (Acros) and used without further purification. 1,1,3,3tetramethylguanidine (Acros, Sigma Aldrich) was freeze-pump-thawed for 4 cycles and stored over 4 Å molecular sieves for three days before use.

X-Ray Crystallography. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at a temperature of 143(1) K. In all cases, rotation frames were integrated using SAINT,² producing a listing of unaveraged F² and σ (F²) values which were then passed to the SHELXTL³ program package for further processing and structure solution on a Dell Pentium 4 computer. The intensity data were corrected for Lorentz and polarization effects and for absorption using TWINABS⁴ or SADABS.⁵ The structures were solved by direct methods (SHELXS-97).⁶ Refinement was by full-matrix least squares based on F² using SHELXL-97.⁶ All reflections were used during refinements. The weighting scheme used was w=1/[σ^2 (F_o²)+ (0.0907P)² + 0.3133P] where P = (F_o² + 2F_c²)/3. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Complex **1** (C₉₀H₇₂CeLi₃N₆O₆, *M* = 1494.48)

crystallizes in the rhombohedral space group $R\overline{3}$ (no. 148) with a = 20.7351(11) Å, c = 30.1140(18) Å, V = 11212.7(11) Å³, Z = 6, and d_{calc} = 1.328 g/cm³; U = 11212.7(11) Å³. The molecule lies on a crystallographic 3-fold axis (at 1/3, 2/3, z); the asymmetric unit is 1/3 of a molecule. The naphthyl group C(11)–C(20) is disordered by a rotation of 180°, where each naphthyl group had an occupancy of 0.50. 114733 reflections were measured, 5743 unique (R_{int} = 0.027) which were used in all calculations for the structure determination. The final R(F) was 0.0277 (observed data). Complex 2 (C₁₁₆H₁₁₀Ce₂Li₄O₁₈, M = 2100.04) crystallizes in the triclinic space group P $\overline{1}$ (no. 2) with a = 11.7345(7) Å, b = 15.1830(9) Å, c = 16.6050(9) Å, α =

82.260(3)°, $\beta = 74.755(3)°$, $\gamma = 87.099(3)°$, $V = 2828.0(3) Å^3$, Z=1, and $d_{calc} = 1.233 \text{ g/cm}^3$; $U = 2828.0(3) Å^3$. 80553 reflections were measured, 13008 unique ($R_{int} = 0.027$) which were used in all calculations for the structure determination. The final R(F) was 0.0267 (observed data).

Complex **3** (C₁₀₅H₁₀₅Ce₂N₉O₉, M = 1917.22) crystallizes in the monoclinic space group C2/c (no. 15) with a = 36.8108(18) Å, b = 20.6080(10) Å, c = 27.9312(13) Å, $\beta = 108.529(2)^{\circ}$, V = 20090.2(17) Å³, Z = 8, and d_{calc} = 1.268 g/cm³; U = 20090.2(17) Å³. The naphthyl rings exhibited varying degrees of disorder; naphthyls C(21)–C(30) and C(61)–C(70) were modeled with two contributing orientations. All naphthyl groups were refined as rigid units. The weighting scheme used for **3** was w=1/[s²(F_o²)+ (0.0943P)² + 92.6350P] where P = (F_o² + 2F_c²)/3. 378757 reflections were measured, 23161 unique ($R_{int} = 0.038$) which were used in all calculations for the structure determination. The final R(F) was 0.0718 (observed data).

Synthetic Details and Characterization

Synthesis of [Li(THF)][naphO]. 2-naphthol (2.46 g, 17.1 mmol) was dissolved in 15 mL of THF in a 20 mL scintillation vial and the solution was chilled to -35 °C. Lithium *tert*-butoxide (1.37 g, 17.1 mmol, 1 equiv) was added to the cold mixture, which was stirred for 2 h resulting in a clear yellow solution. The THF solution was concentrated under reduced pressure and layered with 10 mL of hexanes. Colorless crystals of the product were collected by filtration, washed with hexanes and dried under reduced pressure. Yield 2.88 g, 13.0 mmol, 76 %. ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (doublet, *J* = 8.0 Hz, 1H), 7.58 (doublet, *J* = 8.8 Hz, 1H), 7.47 (doublet, *J* = 8.2 Hz, 1H), 7.25 (triplet, *J* = 7.0 Hz, 1H), 7.07 (multiplet, 1H), 7.03 (doublet of doublets, *J*₁ = 8.8 Hz, *J*₂ = 2.4 Hz, 1H), 6.94 (singlet, 1H). ⁷Li NMR (400 MHz, CDCl₃) δ : 1.04 (s).

Synthesis of [Li(py)₂]₃[Ce(naphO)₆] (1). In a 20 mL scintillation vial, 2-naphthol (0.21 g, 1.45 mmol, 6 equiv) was dissolved in 5 mL of pyridine. Once dissolved, Li[N(SiMe₃)₂] (0.12 g, 0.73 mmol, 3 equiv) was added to the vial and the clear yellow solution was stirred for half an hour. After stirring, the pyridine was removed under reduced pressure, and the resulting gel-like pale yellow solid was re-dissolved in 2 mL of pyridine. Ce[N(SiMe₃)₂]₃ (0.15 g, 0.24 mmol, 1 equiv) was dissolved in 12 mL of hexanes and the bright yellow solution was layered over the clear, pale yellow pyridine solution. After two days, yellow crystals formed. The yellow crystals of the product were collected by filtration, washed with hexanes and dried under reduced pressure. Yield 0.21 g, 0.14 mmol, 57 %. ¹H NMR (360 MHz, CDCl₃) δ: 9.14 (broad singlet, 12H), 7.67 (broad singlet, 6H), 7.24 (broad singlet, 18H), 6.85 (broad singlet, 12H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ: 150.34, 136.63, 126.78, 124.30, 120.96; ⁷Li{¹H} NMR (194 MHz, CDCl₃) δ: 1.99 (s). CHN analyses for compound 1 were consistently within ± 0.5 % for the H and N values but the carbon value was consistently low on four attempts. We attribute the problem with the carbon value to incomplete combustion for this complex. The same result was obtained for complex 4, the lanthanum analog of complex 1.

Synthesis of $[Li(DME)]_4[Ce_2(naphO)_{10}]$ (2). In a 20 mL scintillation vial, 2-naphthol (0.17 g, 1.21 mmol, 10 equiv) was dissolved in 5 mL of DME to form a clear, colorless solution. Once dissolved, Li[N(SiMe_3)_2] (0.081 g, 0.48 mmol, 4 equiv) was added to the vial and stirred over a period of 0.5 hour. After stirring, the DME was removed under reduced pressure, and the white gel-like solid was re-dissolved in 2 mL of DME. A bright yellow solution of Ce[N(SiMe_3)_2]_3 (0.15 g, 0.24 mmol, 2 equiv) was prepared from in 12 mL hexanes and then layered over the clear, colorless DME solution. After two days, off-white needle-like crystals formed. The off-white crystals of the product were collected by filtration, washed with hexanes and dried under

reduced pressure. Yield 0.19 g, 0.091 mmol, 75%. ¹H NMR (360 MHz, CDCl₃) δ : 7.0–6.2 (broad singlet, 6H), 5.76 (broad singlet, 2H), 4.65 (broad singlet, 4H), 4.06 (broad singlet, 6H); ¹³C NMR (360 MHz, CDCl₃) δ : 133.68, 126.62, 125.30, 124.01, 120.68, 73.05, 60.82; ⁷Li{¹H} NMR (194 MHz, CDCl₃) δ : 17.18 (singlet). Analysis calculated for C₁₁₆H₁₁₀O₁₈Ce₂Li₄: C, 66.34; H, 5.28. Found: C, 66.09; H, 5.59.

Synthesis of [HTMG]₃[Ce₂(naphO)₉]·(THF)₂ (3). In a 20 mL scintillation vial, 2-naphthol (0.21 g, 1.45 mmol, 9 equiv) was dissolved in 4 mL of THF. Once dissolved, 1,1,3,3tetramethylguanidine (92 µL, 0.73 mmol, 3 equiv) was added by syringe and the clear, colorless solution was stirred over a period of 1 h. Then, Ce[N(SiMe₃)₂]₃ (0.209 g, 0.32 mmol, 2 equiv) was added to the clear, colorless solution. The clear yellow THF solution was concentrated to 2 mL after stirring for 2 h, and then layered with 20 mL hexanes. After 2 days, yellow crystals formed. The crystals were collected by filtration, washed with hexanes, and dried under reduced pressure. Yield: 0.23 g, 0.11 mmol, 68%. ¹H NMR (360 MHz, CDCl₃) δ: 11.80 (broad singlet, 3H), 7.65 (broad singlet, 20H), 7.30 (broad singlet, 17H), 7.10 (broad singlet, 14H), 2.84(broad singlet, 36H) ¹H NMR (360 MHz, THF- d_8) δ : 10.65 (broad singlet, 3H), 8.85 (broad singlet, 6H), 7.97 (singlet, 6H), 7.69 (singlet, 16H), 7.29 (singlet, 9H), 7.07 (singlet, 12H), 2.88 (singlet, 36H); ¹H NMR (360 MHz,-pyridine- d_5) δ : 9.87 (broad singlet, 3H), 8.83 (singlet, 4H), 8.39 (singlet, 6H), 8.01 (singlet, 9H), 7.88 (singlet, 9H), 7.48 (singlet, 9H), 7.23 (singlet, 9H), 2.35 (singlet, 36H); ¹³C NMR (360 MHz, CDCl₃) δ: 162.37, 136.02, 128.40, 127.16, 126.77, 126.13, 125.02, 120.84, 113.98, 39.35, 31.69. Analysis calculated for C113H121O11N9Ce2: C, 65.84; H, 5.92; N, 6.12. Found: C, 65.81; H, 5.70; N, 6.40. The product can also be crystallized from DME or pyridine by following the same procedure with those solvents.

Synthesis of $[\text{Li}(\text{py})_2]_3[\text{La}(\text{naphO})_6]$ (4). The synthesis of 4 was identical to that of 1, except that La[N(SiMe_3)_2]_3 (0.10 g, 0.16 mmol, 1 equiv) was dissolved in hexanes and layered over a pyridine solution of 2-naphthol (0.14 g, 0.97 mmol, 6 equiv) and Li[N(SiMe_3)_2] (0.082 g, 0.434 mmol, 3 equiv). Yield 0.18 g, 0.12 mmol, 74%. ¹H NMR (400 MHz, CDCl₃) δ : 8.13 (singlet, 12H), 7.53 (singlet, 6H), 7.43 (triplet, J = 7.0 Hz, 6H), 7.20 (singlet, 7H) 7.08 (singlet, 13H), 6.84 (singlet, 28H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ : 163.51, 149.61, 136.35, 136.10, 128.80, 127.38, 126.86, 125.72, 125.01, 124.09, 123.81, 120.68, 111.88; ⁷Li{¹H} NMR (194 MHz, CDCl₃) δ : 2.04 (1Li), 1.95 (0.84 Li), 1.61 (0.24 Li). The CHN combustion analysis for compound **4** was within ±0.5 % for the H and N values but the carbon value was low. We attribute the problem with the carbon value to incomplete combustion for this complex. The same result was obtained for complex **1**, the cerium analog of complex **4**.

Synthesis of [Li(DME)]₄[La₂(naphO)₁₀] (5). The synthesis of 5 was identical to that of 2, except that La[N(SiMe₃)₂]₃ (1.00 g, 0.16 mmol, 2 equiv) was dissolved in hexanes and layered over a DME solution of 2-naphthol (0.12 g, 0.81 mmol, 10 equiv) and LiN(SiMe₃)₂ (0.054 g, 0.32 mmol, 4 equiv). Yield 0.087 g, 0.041 mmol, 51%. ¹H NMR (400 MHz, CDCl₃) δ : 7.58 (singlet, 8H), 7.33 (singlet, 8H), 7.17 (multiplet, 16H), 7.11 (triplet, *J* = 7.0 Hz, 13H), 6.84 (singlet, 7H), 6.71 (singlet, 6H), 3.20 (singlet, 16H), 2.94 (singlet, 24H). ⁷Li{¹H} NMR (194 MHz, CDCl₃) δ : 0.37 (1Li), 0.17 (0.7Li). Analysis calculated for C₁₁₆H₁₁₀O₁₈La₂Li₄: C, 66.42; H, 5.29. Found: C, 66.20; H, 5.70.

Synthesis of [HTMG]₃[La₂(NaphO)₉]·(DME)₂ (6). The synthesis of 6 was identical to that of 3, except that La[N(SiMe₃)₂]₃ (0.11 g, 0.16 mmol, 2 equiv) was reacted with 2-naphthol (0.11 g, 0.73 mmol, 9 equiv) and 1,1,3,3-tetramethylguanidine (33 μ L, 0.24 mmol, 3 equiv) in either THF or DME. Yield 0.11 g, 0.050 mmol, 62%. ¹H NMR (360 MHz, CDCl₃) δ : 7.60 (doublet, *J* = 7.6

Hz, 9H), 7.50 (doublet, J = 7.6 Hz, 9H), 7.29 (multiplet, 21H), 7.21 (triplet, J = 6.7 Hz, 15H), 7.10 (triplet, J = 7.2 Hz, 9H), 1.89 (singlet, 36H); ¹³C NMR (360 MHz, CDCl₃) δ : 163.63, 161.42, 136.27, 128.73, 127.47, 126.96, 125.86, 125.22, 124.70, 120.72, 112.04, 38.51. Analysis calculated for C₁₁₃H₁₂₅O₁₃N₉La₂: C, 64.78; H, 6.01; N, 6.02. Found: C, 64.60; H, 5.75; N, 5.78.

Diffusion Coefficient Experiments:

The NMR experiments for the determination of the self-diffusion coefficients and hydrodynamic radii were performed at 300 K on a Bruker Avance DRX 600 MHz spectrometer equipped with a 5 mm TXI probe with a z-axis gradient coil. The gradient system was calibrated with a doped water sample. In Bipolar-LED experiments, diffusion time (Δ) was 100 ms for all samples, and the duration (δ) of the sine shaped gradients was set to 1.4 ms. Data processing was accomplished with Bruker TOPSPIN 1.3 DOSY software and Bruker TOPSPIN 1.3 T1/T2 software. The experiments were run in CDCl₃ with benzene used as an internal standard.⁷ The diffusion coefficient for benzene in CDCl₃ was determined to be 2.2×10^{-9} m²s⁻¹ with a standard deviation of 0.1×10^{-9} m²s⁻¹, which is in good agreement with literature values.^{7, 8} The hydrodynamic radii (*r*) of **3–6** were determined using the ratios of the diffusion constant of benzene (D_0 reference) with that of the samples (D_0 sample) and the hydrodynamic radius of benzene ($r_{reference}$), which was set to 2.54 Å (Eq 1).⁸

$$r = \left(\frac{D_{0 \ reference}}{D_{0 \ sample}}\right) \times r_{reference} \tag{1}$$

This relationship is derived from the Stokes-Einstein equation (Eq 2),^{7, 9} by referencing against the internal standard to minimize errors due to variations in viscosity and temperature within the samples. ^{7, 9-11}

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

$$D_0 = \frac{kT}{6\pi\eta r} \qquad (2)$$

Following Stokes-Einstein relation, D_0 is the diffusion coefficient, k is Boltzmann's constant, T is the temperature, η is the viscosity of the solution, and r is the hydrodynamic radius.

Figure S1. ¹H NMR spectrum of $[Li(py)_2]_3[Ce(naphO)_6]$ (1) collected in CDCl₃. The asterisks indicate exogenous solvent peaks.

Figure S2. ⁷Li NMR spectrum (left) and ¹³C NMR spectrum (right) of $[Li(py)_2]_3[Ce(naphO)_6]$ (1) collected in CDCl₃.

Figure S3. ¹H NMR spectrum of $[Li(DME)]_4[Ce_2(naphO)_{10}]$ (2) collected in CDCl₃. Asterisks indicate exogenous solvent species.

Figure S4. ⁷Li NMR (left) and ¹³C NMR (right) spectra of $[Li(DME)]_4[Ce_2(naphO)_{10}]$ (2) collected in CDCl₃. Asterisks indicate exogenous solvent species.

Figure S5. ¹H NMR spectrum of [HTMG]₃[Ce₂(naphO)₉] (**3**) crystallized from THF collected in CDCl₃.

Figure S6. ¹H NMR spectrum of [HTMG]₃[Ce₂(naphO)₉] (**3**) crystallized from DME (left) and pyridine (right) collected in CDCl₃. Asterisks indicate exogenous solvent peaks.

Figure S7. ¹H NMR spectrum of [HTMG]₃[Ce₂(naphO)₉] (**3**) crystallized from DME collected in THF– d_8 (left) and pyridine– d_5 . Asterisks indicate the exogenous solvent species present.

Figure S8. ¹³C NMR spectrum of [HTMG]₃[Ce₂(naphO)₉] (**3**) crystallized from THF collected in CDCl₃. Asterisks indicate exogenous solvent species present.

Figure S9. ¹H NMR spectrum of $[Li(py)_2]_3[La(naphO)_6]$ (4) collected in CDCl₃. Asterisks indicate exogenous solvent peaks.

Figure S10. ⁷Li NMR spectrum (left) and ¹³C NMR spectrum (right) of [Li(py)₂]₃[La(naphO)₆] (4) collected in CDCl₃. Asterisks indicate exogenous solvent peaks.

Figure S11. ¹H NMR spectrum of [Li(DME)]₄[La₂(naphO)₁₀] (5) collected in CDCl₃. Asterisks indicate exogenous solvent species.

Figure S12. ⁷Li NMR (left) and ¹³C NMR (right) spectra of $[Li(DME)]_4[La_2(naphO)_{10}]$ (5) collected in CDCl₃. Asterisks indicate exogenous solvent species.

Figure S13. ¹H NMR spectrum of [HTMG]₃[La₂(naphO)₉] (**6**) crystallized from DME collected in CDCl₃. Asterisks indicate exogenous solvent species present.

Figure S14. ¹³C NMR spectrum of [HTMG]₃[La₂(naphO)₉] (**6**) crystallized from THF collected in CDCl₃. Asterisks indicate exogenous solvent species present.

Figure S15. Representative ¹H DOSY NMR spectrum of $[HTMG]_3[Ce_2(naphO)_9]$ (3) in CDCl₃ with benzene as an internal reference.

Figure S16. Representative ¹H DOSY NMR spectrum of $[Li(py)_2]_3[La(naphO)_6]$ (4) in CDCl₃ with benzene as an internal reference.

Figure S17. Representative ¹H DOSY NMR spectrum of $[Li(DME)]_4[La_2(naphO)_{10}]$ (5) in CDCl₃ with benzene as an internal reference.

Figure S18. Representative ¹H DOSY NMR spectrum of [HTMG]₃[La₂(naphO)₉] (6) in CDCl₃ with benzene as an internal reference.

References

- 1 D. C. Bradley, J. S. Ghotra and F. A. Hart, J. Chem. Soc., Dalton Trans., 1973, 1021–1023.
- 2 Bruker, Bruker AXS Inc., Madison, Wisconsin, USA, 2009.
- 3 Bruker, Bruker ASX Inc., Madison, Wisconsin, USA, 2009.
- 4 G. M. Sheldrick, University of Gottingen, Germany, 2008.
- 5 G. M. Sheldrick, University of Gottingen, Germany, 2007.
- 6 G. M. Sheldrick, *Acta Crystallographica Section A: Foundations of Crystallography*, 2008, **A64**, 112-122.
- 7 D. Li, G. Kagan, R. Hopson and P. Williard, J. Am. Chem. Soc., 2009, 131, 5627–2634.
- 8 C. Wakai and M. Nakahara, J. Chem. Phys., 1997, 106, 7512–7518.
- 9 E. J. Cabrita and S. Berger, Magn. Reson. Chem., 2001, 39, S142–S148.
- 10 E. M. Lane, T. W. Chapp, R. P. Hughes, D. S. Glueck, B. C. Feland, G. M. Bernard, R. E. Wasylishen and A. L. Rheingold, *Inorg. Chem.*, 2010, **49**, 3950–3957.
- 11 D. Zuccaccia and A. Macchioni, Organometallics, 2005, 24, 3476-3486.