Electronic Supporting Information

Selective inclusion of PO₄³⁻ within persistent dimeric capsules of a tris(thiourea) receptor and evidence of cation/solvent sealed unimolecular capsules

Sandeep Kumar Dey and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India.
Fax: +91-361-258-2349; Tel: +91-361-258-2313
E-mail: gdas@iitg.ernet.in
Characterization of receptor L:

Figure S1. 1H NMR spectrum of L in DMSO-d_6 at 298 K.

Figure S2. 13C NMR spectrum of L in DMSO-d_6 at 298 K.

Figure S3. FT-IR spectrum of receptor L recorded in KBr pellet.
Characterization of HPO$_4^{2-}$-complex, [2(\textit{HL})$^{+}$HPO$_4^{2-}$]$^{-}$3H$_2$O (1a):

Figure S4. 1H NMR spectrum of complex 1a in DMSO-d_6 at 298 K.

Figure S5. 31P NMR spectrum of complex 1a in DMSO-d_6 at 298 K.

Figure S6. FT-IR spectrum of complex 1a recorded in KBr pellet.
Characterization of PO_4^{3-}–encapsulated complex, $3\text{TBA}^+ [2\text{L}(\text{PO}_4^{3-})] 2\text{MeCN}$ (1):

Figure S7. ^1H NMR spectrum of complex 1 in DMSO-d_6 at 298 K.

Figure S8. ^{31}P NMR spectrum of complex 1 in DMSO-d_6 at 298 K.

Figure S9. FT-IR spectrum of complex 1 recorded in KBr pellet.
Figure S10. Powder XRD patterns of complex 1 recorded with dried crystalline powders.

Characterization of PO$_4^{3-}$-encapsulated complex, 3TEA$^+ [2L(PO$_4^{3-}$)] (1b):

Figure S11. 1H NMR spectrum of complex 1b in DMSO-d_6 at 298 K.
Figure S12. 31P NMR spectrum of complex 1b in DMSO-d_6 at 298 K.

Figure S13. FT-IR spectrum of complex 1b recorded in KBr pellet.
Figure S14. Powder XRD patterns of complex 1b recorded with dried crystalline powders.
Figure S15. 2D-NOESY NMR spectrum of complex 1b in DMSO-\textit{d}_6 at 298 K.
Figure S16. Partial (aromatic region) 2D-NOESY NMR spectrum of complex 1b in DMSO-\textit{d}_{6} at 298 K, in presence of 0.5 equivalent 2:1 mixture of TBA(OH) and TBA(H_{2}PO_{4}).
Characterization of F^--encapsulated complex, $\text{TBA}^+[(\text{I}((\text{F})/\text{DMSO}) (2\text{a})$:

Figure S17. ^1H NMR spectrum of complex 2a in DMSO-d_6 at 298 K.

Figure S18. ^{19}F NMR spectrum of complex 2a in DMSO-d_6 at 298 K.

Figure S19. FT-IR spectrum of complex 2a recorded in KBr pellet.
Characterization of CO_3^{2-}–encapsulated complex, $2\text{TEA}^+[2L(\text{CO}_3^{2-})]$ (3):

Figure S20. ^1H NMR spectrum of complex 3 in DMSO-d_6 at 298 K.

Figure S21. FT-IR spectrum of complex 3 recorded in KBr pellet.
Figure S22. Partial (aromatic region) 2D-NOESY NMR spectrum of complex 3 in DMSO-d_6 at 298 K.
Characterization of SO_4^{2-}–encapsulated complex, $\text{2TBA}^+[L(\text{SO}_4^{2-})] \tag{4}$:

Figure S23. ^1H NMR spectrum of complex 4 in DMSO-d_6 at 298 K.

Figure S24. FT-IR spectrum of complex 4 recorded in KBr pellet.
Figure S25. 2D-NOESY NMR spectrum of complex 4 in DMSO-d_6 at 298 K.
Characterization of Cl⁻-complex, [(HL)*Cl]·DMF (5):

Figure S26. ¹H NMR spectrum of complex 5 in DMSO-d₆ at 298 K.

Figure S27. FT-IR spectrum of complex 5 recorded in KBr pellet.
Figure S28. Expanded 1H NMR spectra of 1a obtained upon titration with increasing equivalents of TBAF in DMSO-d_6 showing the selective formation of phosphate capsule (1) in solution.
Figure S29. 1H NMR spectrum of complex 1a in presence of excess TEA(AcO) in DMSO-d_6 showing the selective formation of phosphate capsule (1b) in solution.

Additional Crystallographic data:

Figure 30. Crystal packing diagram of complex 1a (view down the crystallographic c-axis).
Figure 31. Crystal packing diagram of complex 1b, showing the cylindrical voids of 568 Å³ (view down the crystallographic c-axis).

Figure 32. Crystal packing diagram of complex 2a (view down the crystallographic c-axis).
Figure 33. Crystal packing diagram of complex 3 (view down the crystallographic c-axis).

Figure 34. Crystal packing diagram of complex 4 (view down the crystallographic a-axis).
Figure 35. Crystal packing diagram of complex 5 (view down the crystallographic b-axis).