Electronic Supplementary Information

[7]-Helicene: A Chiral Molecular Tweezer for Silver(I) Salts.

Matthew J. Fuchter, a* Julia Schaefer, b Dilraj K. Judge, a Benjamin Wardzinski, a Marko Weimar, a Ingo Krossing b

a Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom

b Institute for Inorganic and Analytical Chemistry, Freiburger Materialforschungszentrum FMF and Freiburg Institute for Advanced Studies (FRIAS), Albert–Ludwigs–Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany

* To whom correspondence should be addressed:
Phone: +44 (0)20 7594 5815; E-mail: m.fuchter@imperial.ac.uk
Contents

Characterisation of [7]-helicene...3
Characterisation of Ag(I)-[7]-helicene complex..6
Evaluation of the formation constant of the silver(I) complex with [7]-helicene.....9
Evaluation of the formation constant of the silver(I) complex with ligand 19
1H NMR spectroscopy ..10
A inverse competition experiment between [7]-helicene and ligand 1 for Ag(I) using
1H NMR spectroscopy ..10
Synthesis and Characterisation of $[\text{Ag(C}_{30}\text{H}_{18}\text{)}\text{CH}_2\text{Cl}_2]^+ [\text{Al(OC(CF}_3}_3\text{)}_4^-]$11
References...13
Characterisation of [7]-helicene

Figure S1. 1H-NMR comparison: a) [7]-helicene:Ag complex in CDCl$_3$; b) [7]-helicene + 3.0 equiv. Ag$^+$ in CH$_2$Cl$_2$.

Figure S2. UV-vis spectrum monitoring the addition of aliquots of Ag$^+$ to a solution of [7]-helicene: a) Increase of Ag$^+$ from 0.0 equiv. to 6.0 equiv.; b) Increase of Ag$^+$ from 6.0 equiv. to 12.3 equiv.
Figure S3. COSY of [7]-helicene in CDCl$_3$

Figure S4. NOESY of [7]-helicene in CDCl$_3$
Figure S5. HSQC of [7]-helicene in CH₂Cl₂

Figure S6. HMBC of [7]-helicene in CH₂Cl₂
Characterisation of Ag(I)-[7]-helicene complex

Figure S7. COSY of [7]-helicene + 2.0 equiv. Ag⁺ in CH₂Cl₂

Figure S8. NOESY of [7]-helicene + 2.0 equiv. Ag⁺ in CH₂Cl₂
Figure S9. HSQC of [7]-helicene + 3.0 equiv. Ag⁺ in CH₂Cl₂ (NB * represents the quaternary carbons and X represents the peaks corresponding to the WCA)

Figure S10. HMBC of Ag(I) - [7]-helicene complex in CD₂Cl₂
Figure S11. 1H-NMR comparison: a) P-[7]-helicene + 3.0 equiv. Ag$^+$ in CH$_2$Cl$_2$; b) racemic [-7]-helicene + 3.0 equiv. Ag$^+$ in CH$_2$Cl$_2$.
Evaluation of the formation constant of the silver(I) complex with [7]-helicene

By using a nonlinear least-squares regression analysis with variable weighting of the data points,¹,² the formation constant of Ag[AlOC(CF₃)₃]₄ with [7]-helicene was determined to be 167 ± 10 M⁻¹. The following assumptions have been made: (i) The binding mode between silver(I) complex and [7]-helicene is 1:1 and (ii) as the silver(I) complex is added, it is consumed by binding to the [7]-helicence. The calculated chemical shifts (for proton Ha) are within the experimental error associated with the measurement of a chemical shift.

![Graph of Ratio of [Ag]:[7]-helicene against the chemical shift observed and calculated](image)

Figure S12. A plot to show the ratio of silver(I):[7]-helicene against the observed and calculated chemical shift of proton Ha of [7]-helicene

Evaluation of the formation constant of the silver(I) complex with ligand 1

Using the same method as above, the formation constant of Ag[AlOC(CF₃)₃]₄ with ligand 1 was determined to be 269 ± 10 M⁻¹.

![Graph of Ratio of [Ag]:[Ligand] against the chemical shift observed and calculated](image)

Figure S13. A plot to show the ratio of silver(I):ligand 1 against the observed and calculated chemical shift of proton Ha of ligand 1
A competition experiment between [7]-helicene and ligand 1 for Ag(I) using 1H NMR spectroscopy

![Figure S14](image1.png)

Figure S14. 1H-NMR in CH$_2$Cl$_2$: a) [7]-helicene; b) [7]-helicene + 2.0 equiv. Ag$^+; c$ – e) The 1H-NMR spectra recorded after each incremental addition (as indicated in the spectra) of ligand 1.

A inverse competition experiment between [7]-helicene and ligand 1 for Ag(I) using 1H NMR spectroscopy

![Figure S15](image2.png)

Figure S15. 1H-NMR in CH$_2$Cl$_2$: a) Phenyl region of ligand 1; b) Ligand 1 + 2.0 equiv. Ag$^+$; c) – e) The 1H-NMR spectra recorded after each incremental addition (as indicated in the spectra) of [7]-helicene.
Synthesis and Characterisation of [Ag(C\textsubscript{30}H\textsubscript{18})*CH\textsubscript{2}Cl\textsubscript{2})]+[Al(OC(CF\textsubscript{3})\textsubscript{3})\textsubscript{4}]−

Ag[AlOC(CF\textsubscript{3})\textsubscript{3})\textsubscript{4}] (45.5 mg, 42.3 x 10-3 mmol) and [7]Helicene (16.0 mg, 42.3 x 10-3 mmol) were weighed in the glove box into a special two-flask fritplate vessel with J. Young valves. CH\textsubscript{2}Cl\textsubscript{2} was condensed to the reaction mixture at 233 K. The mixture was stirred for 48 h at room temperature and the colour turned from colourless to green. Crystallization of the filtrate at 253 K led to green crystals. The entire product was used for analytical methods, therefore the yield could not be determined.

1H NMR (400.17 MHz, CD\textsubscript{2}Cl\textsubscript{2}): δ = 8.25 (d, Ha), 8.22 (s, Hi), 8.09 (d, Hg), 8.08 (d, Hf), 7.76 (m, Ha), 7.63 (d,He), 7.49 (m, Hd), 7.25 (m, Hc), 6.80 (m, Hb).

19F NMR (104.27 MHz, CD\textsubscript{2}Cl\textsubscript{2}): δ = −75.8 (s, CC\textsubscript{F}\textsubscript{3}).

27Al (376.49 MHz, CD\textsubscript{2}Cl\textsubscript{2}): 34.6 (s, Al(OC(CF\textsubscript{3})\textsubscript{3})\textsubscript{4}).

IR: v (intensity) = 1612 (w), 1352 (m), 1297 (ms), 1274 (s), 1241 (s), 1211 (vs), 970 (s), 880 (vw), 851 (w), 827 (w), 783 (w), 758 (w), 726 (m), 611 (vw), 561 (w), 536 (w), 443 (w).

X-ray data for 1

Single crystals were mounted under N\textsubscript{2} atmosphere in perfluoroetheroil at 253 K. Data were collected on a Bruker SMART APEX II CCD area detector diffractometer with Mo-K\textsubscript{α} radiation (0.71073 Å). The structure was solved by direct methods in SHELXTL1 and refined by least squares on weighted F2 values for all reflections. Multiple disorders of the anion were handled according to the shelx-97 manual:

G. Sheldrick, University of Göttingen, Germany

Special details of the refinement: As both anions are highly disorderd, many restraints and constraints were necessary to treat the disorder. This has the unfortunate consequence of a low parameter to data ratio (8.8). All necessary measures to save parameters were taken (SIMU and DELU instructions, see the list of instructions from the SHELEX-ins-file below). A larger crystal might have corrected this problem, but was not possible for us to obtain. However, one of the standard problems with this anion is precisely the data-parameter ratio, especially in structures with low (istropically refined) hydrogen atom content like here: All of the fluorine atoms have to be treated anisotropically, but the inherent propensity of the twelve CF\textsubscript{3}-groups per anion to disorder often leads to multiply disordered structures, which then end up with a low paramater data ratio. The current case was to optimum we could achieve.

A complete list of all constraints and restrains used for the refinement of [Ag(C\textsubscript{30}H\textsubscript{18})*CH\textsubscript{2}Cl\textsubscript{2})]+[Al(OC(CF\textsubscript{3})\textsubscript{3})\textsubscript{4}] is given below:

EADP F72 F71
EADP F39 F37A
EADP F59 F60A
EADP F65A F65
EADP C6 C6A
SIMU SF O
All disordered OC(CF$_3$)$_3$ were handled with the SAME O1 > F9. The main domain for the disordered OC(CF$_3$)$_3$-groups in both anions is assigned to part 1 the second orientation is assigned to part 2. The occupancy factor FVAR for Part1(anion1) is 0.65, FVAR for Part1(anion2) is 0.52. The disorder in the molecule CH$_2$Cl$_2$ is described with an occupancy factor of 0.60 (for part1). The disorder of the coordinated CH$_2$Cl$_2$ in one of the silver helicene complexes does not impact upon the binding between the silver and the helicene, which is the interesting part of the structure. The H-atoms of the [7]-helicenes are fixed with the AFIX 43 constraint, the H-atoms of the disordered solvent molecule with the AFIX 23 constraint.

CCDC 846098
Identification code p21c
Empirical formula C48 H22 Ag Al Cl4 F36 O4
Formula weight 1623.31
Temperature 100(2) K
Wavelength 0.71073 Å
Crystal system Monoclinic
Space group P2(1)/c
Unit cell dimensions a = 35.2189(8) Å $\alpha = 90^\circ$.
b = 11.0863(2) Å $\beta = 115.412(1)^\circ$.
c = 31.1869(7) Å $\gamma = 90^\circ$.
Volume 10998.7(4) Å3
Z 8
Density (calculated) 1.961 Mg/m3
Absorption coefficient 0.746 mm$^{-1}$
F(000) 6352
Crystal size 0.2 x 0.05 x 0.03 mm3
Theta range for data collection 1.82 to 25.35$^\circ$.
Index ranges -42<=$h<=$37, -13<=$k<=$13, -34<=$l<=$37
Reflections collected 62362
Independent reflections 20091 [R(int) = 0.0649]
Completeness to theta = 25.35$^\circ$ 99.8 %
Max. and min. transmission 0.7454 and 0.6856
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>20091 / 4245 / 2544</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.036</td>
</tr>
<tr>
<td>Final R indices [$I>2\sigma(I)$]</td>
<td>$R_1 = 0.0689$, $wR_2 = 0.1655$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R_1 = 0.1152$, $wR_2 = 0.1884$</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.882 and -0.690 eÅ$^{-3}$</td>
</tr>
</tbody>
</table>

References