Supporting Information for

Complexes of Manganese, Iron and Cobalt with Sterically Demanding Indenyl Ligands

Miyuki Maekawa, a Constantin G. Daniliuc, a Matthias Freytag, a Peter G. Jones a and Marc D. Walter a, *

Table of Contents:

1. Experimental Details for [(η^5-Cp')Fe(CO)2I] S2
2. ORTEP Diagrams for 1-Fe/Co and 2-Mn/Fe/Co S3
3. Variable Temperature NMR Studies on 1-Fe S6
4. UV-Vis Spectra of Bis(indenyl)metal Complexes S7
5. Electrochemical Studies S10
6. IR Spectra S13
7. Computational Details S18
 - Comparison of theoretical with experimental results
 - Structures and XYZ coordinates
8. References S24
1. Experimental Details for [(η⁵-Cp')Fe(CO)₂I]

(1,2,4-Tri-tert-butylcyclopentadienyl)(dicarbonyl)iron(II)iodide, [Cp'Fe(CO)₂I]. FeI₂(thf)₂ (1.77 g, 3.9 mmol) and NaCp⁺ (1.00 g, 3.9 mmol) were dissolved in THF (50 mL) and stirred for 4 h at ambient temperature. Exposure of this solution to CO (1 atm) resulted in a colour change from dark red to dark brown. After stirring for 2 d the solvent was removed under dynamic vacuum and the residue was extracted with toluene (50 mL). The extracts were filtered and taken to dryness to give a dark purple solid. Yield: 1.32 g (2.8 mmol, 72%). Single crystals were grown from saturated pentane solutions at room temperature. ¹H NMR (300.0 MHz, C₆D₆, 24°C): δ 4.86 (s, 2H, ring-C₆H), 1.21 (s, 9H, tBu-H), 1.18 (s, 18H, tBu-H). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 25°C): δ 216.1 (2C, CO), 108.4 (2C, ring-C₁₅), 107.9 (1C, ring-C₁₅), 88.6 (2C, ring-CH), 33.4 (6C, tBu-CH₃), 32.6 (2C, tBu-CH₂), 32.0 (3C, tBu-CH₃) 31.2 (1C, tBu-C₁₅). The E.I. mass spectrum showed a molecular ion at m/e= 472 amu. The parent ion isotopic cluster was simulated: (calcd. %, observd. %): 470 (1, 7), 471 (1, 1), 472 (100, 100), 473 (24, 22), 474 (4, 4). IR (ATR; cm⁻¹): 3083(w), 2959(s), 2869 (m), 2013 (s), 1966 (m), 1936 (sh), 1391 (m), 1245 (m), 1094 (m), 1021 (m), 798 (m), 611 (m). Mp: 115°C (dec.).

Figure S1. ORTEP diagram of Cp'Fe(CO)₂I with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Empirical formula C₁₉ H₂₉ Fe I O₂
Formula weight 472.17
Temperature 100(2) K
Wavelength 1.54184 Å
Crystal system orthorhombic
Space group Pca₂₁
Unit cell dimensions a = 15.3534(3) Å, α = 90°
 b = 10.4548(2) Å, β = 90°
 c = 12.3471(3) Å, γ = 90°
Volume 1981.92(7) Å³

S2
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.582 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>18.373 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>952</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.12 x 0.03 x 0.02 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>4.23 to 75.87°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-19 <= h <= 19, -13 <= k <= 13, -13 <= l <= 15</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>49188</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3932 [R(int) = 0.0983]</td>
</tr>
<tr>
<td>Completeness to theta = 75.00°</td>
<td>100.0%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>1.00000 and 0.05459</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3932 / 1 / 217</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.039</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0277, wR2 = 0.0704</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0286, wR2 = 0.0712</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.034(5)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.978 and -0.664 e.Å⁻³</td>
</tr>
</tbody>
</table>
2. ORTEP Diagrams for 1-Fe/Co and 2-Mn/Fe/Co

![ORTEP Diagram of 1-Fe with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.](image1)

Figure S2. ORTEP diagram of 1-Fe with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

![ORTEP Diagram of 1-Co with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.](image2)

Figure S3. ORTEP diagram of 1-Co with 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.
Figure S4. ORTEP diagram of 2-Mn with 30 % probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure S5. ORTEP diagram of 2-Fe with 30 % probability ellipsoids. Hydrogen atoms are omitted for clarity.
Figure S6. ORTEP diagram of 2-Co*(3 C₆D₆) with 30 % probability ellipsoids. Hydrogen atoms and benzene solvates are omitted for clarity.

3. Variable temperature NMR studies on 1-Fe

Figure S6. Variable temperature (VT) ¹H NMR spectra of 1-Fe recorded in C₇D₇.
4. UV-Vis Spectra of Bis(indenyl)metal Complexes

Figure S7. UV-vis spectrum of 1-Mn.

Figure S8. UV-vis spectrum of 2-Mn.
Figure S9. UV-vis spectrum of 1-Fe.

Figure S10. UV-vis spectrum of 2-Fe.
Figure S11. UV-vis spectrum of 1-Co.

Figure S12. UV-vis spectrum of 2-Co.
Figure S13. UV-vis spectra for 1-Fe, 1-FeCp' and Cp'2Fe.
5. Electrochemical Studies

Figure S14. Cyclic voltammogram (CV) and $E_{1/2}$ values for **1-Mn**. CV recorded in THF with 0.4 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 500 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +560 mV).

Figure S15. Cyclic voltammogram (CV) and $E_{1/2}$ values for **2-Mn**. CV recorded in THF with 0.4 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 500 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +560 mV).
Figure S16. Cyclic voltammogram (CV) and $E_{1/2}$ values for 1-Fe. CV recorded in CH$_2$Cl$_2$ with 0.1 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 100 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +460 mV).

Figure S17. Cyclic voltammogram (CV) and $E_{1/2}$ values for 2-Fe. CV recorded in CH$_2$Cl$_2$ with 0.1 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 100 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +460 mV).
Figure S18. Cyclic voltammogram (CV) and $E_{1/2}$ values for 1-Co. CV recorded in CH$_2$Cl$_2$ with 0.1 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 100 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +460 mV).

Figure S19. Cyclic voltammogram (CV) and $E_{1/2}$ values for 2-Co. CV recorded in CH$_2$Cl$_2$ with 0.1 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 100 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +460 mV).
Figure S20. Cyclic voltammogram (CV) and $E_{1/2}$ values for 1-FeCp'. CV recorded in CH$_2$Cl$_2$ with 0.1 M [n-Bu$_4$N][PF$_6$] supporting electrolyte. Scan rate: 100 mV/s. Referenced to SCE with internal Cp$_2$Fe/Cp$_2$Fe$^+$ standard (at +460 mV).

7. IR Spectra

Figure S21. IR spectrum of Cp'Fe(CO)$_2$I
Figure S22. IR spectrum of 1-Fe(CO)$_2$I

Figure S23. IR spectrum of 1-Mn
Figure S24. IR spectrum of 2-Mn

Figure S25. IR spectrum of 1-Fe
Figure S26. IR spectrum of 2-Fe

Figure S27. IR spectrum of 1-Co
Figure S28. IR spectrum of 2-Co
7. Computational Details

All computations were performed using the DFT functional method B97D as implemented in the Gaussian09 program. The all-electron triple-ζ basis set (6-311G**) was applied for all elements (Mn, Fe, Co, C and H). Unrestricted calculations were performed for all the paramagnetic species studied. Full geometry optimizations were performed without any symmetry constraints (C1) starting from available crystal structure data.

Energies for the optimized structure:

<table>
<thead>
<tr>
<th>Compound</th>
<th>E(0 K)a [Ha]</th>
<th>H(298 K)b [Ha]</th>
<th>G(298 K)b [Ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[(Cp')2Fe]</td>
<td>-2593.366968</td>
<td>-2593.325104</td>
<td>-2593.430417</td>
</tr>
<tr>
<td>[(Cp')Fe(IndBu)] (1-FeCp')</td>
<td>-2589.813632</td>
<td>-2589.773971</td>
<td>-2589.875565</td>
</tr>
<tr>
<td>[(1,3-(Me3C)2C9H6)2Mn] (1-Mn, low-spin) (S=1/2)</td>
<td>-2473.439739</td>
<td>-2473.401537</td>
<td>-2473.502172</td>
</tr>
<tr>
<td>[(1,3-(Me3C)2C9H6)2Mn] (1-Mn, high-spin) (S=5/2)</td>
<td>-2473.446399</td>
<td>-2473.407473</td>
<td>-2473.513696</td>
</tr>
<tr>
<td>[(1,3-(Me3C)2C9H6)2Fe] (1-Fe)</td>
<td>-2586.250969</td>
<td>-2586.213389</td>
<td>-2586.311265</td>
</tr>
<tr>
<td>[(1,3-(Me3C)2C9H6)Co] (1-Co)</td>
<td>-2705.380227</td>
<td>-2705.341669</td>
<td>-2705.443768</td>
</tr>
<tr>
<td>Mn2+ (S=1/2)</td>
<td>-1150.321281</td>
<td>-1150.318920</td>
<td>-1150.337598</td>
</tr>
<tr>
<td>Mn2+ (S=5/2)</td>
<td>-1150.467726</td>
<td>-1150.465365</td>
<td>-1150.485080</td>
</tr>
<tr>
<td>Fe2+ (S=0)</td>
<td>-1263.018363</td>
<td>-1263.016002</td>
<td>-1263.034041</td>
</tr>
<tr>
<td>Co2+ (S=1/2)</td>
<td>-1382.205507</td>
<td>-1382.203147</td>
<td>-1382.221924</td>
</tr>
<tr>
<td>[IndBu]⁻</td>
<td>-661.040066</td>
<td>-661.021354</td>
<td>-661.082948</td>
</tr>
<tr>
<td>[Cp']⁻</td>
<td>-664.578791</td>
<td>-664.557361</td>
<td>-664.625176</td>
</tr>
</tbody>
</table>

aDFT energy incl. ZPE.

bStandard conditions T = 298.15 K and p = 1 atm.
(atom, x-, y-, z-positions in Å):

Structure of 1-FeCp

<table>
<thead>
<tr>
<th>Atom</th>
<th>X Position (Å)</th>
<th>Y Position (Å)</th>
<th>Z Position (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.139400</td>
<td>0.049300</td>
<td>-0.072900</td>
</tr>
<tr>
<td>C</td>
<td>1.975800</td>
<td>-0.398700</td>
<td>0.831000</td>
</tr>
<tr>
<td>C</td>
<td>1.969200</td>
<td>-0.716800</td>
<td>-0.561600</td>
</tr>
<tr>
<td>H</td>
<td>2.659400</td>
<td>-0.309100</td>
<td>-1.285800</td>
</tr>
<tr>
<td>C</td>
<td>0.951500</td>
<td>-1.677600</td>
<td>-0.875400</td>
</tr>
<tr>
<td>C</td>
<td>0.336600</td>
<td>-2.032800</td>
<td>0.390100</td>
</tr>
<tr>
<td>C</td>
<td>0.962200</td>
<td>-1.228100</td>
<td>1.436500</td>
</tr>
<tr>
<td>H</td>
<td>1.103400</td>
<td>-0.878700</td>
<td>3.590800</td>
</tr>
<tr>
<td>C</td>
<td>-0.296200</td>
<td>-2.429200</td>
<td>3.130200</td>
</tr>
<tr>
<td>H</td>
<td>-0.546500</td>
<td>-2.614400</td>
<td>4.173900</td>
</tr>
<tr>
<td>C</td>
<td>-0.921300</td>
<td>-3.211100</td>
<td>2.109500</td>
</tr>
<tr>
<td>H</td>
<td>-1.639000</td>
<td>-3.979600</td>
<td>2.393400</td>
</tr>
<tr>
<td>C</td>
<td>-0.627200</td>
<td>-3.018200</td>
<td>0.777200</td>
</tr>
<tr>
<td>H</td>
<td>-1.318400</td>
<td>-3.445000</td>
<td>0.922800</td>
</tr>
<tr>
<td>O</td>
<td>3.076600</td>
<td>0.346300</td>
<td>1.562200</td>
</tr>
<tr>
<td>C</td>
<td>3.860400</td>
<td>-0.686800</td>
<td>2.427300</td>
</tr>
<tr>
<td>H</td>
<td>3.222300</td>
<td>-1.125100</td>
<td>3.203000</td>
</tr>
<tr>
<td>H</td>
<td>4.715000</td>
<td>-0.195000</td>
<td>2.915600</td>
</tr>
<tr>
<td>H</td>
<td>4.239700</td>
<td>-1.502600</td>
<td>1.796400</td>
</tr>
<tr>
<td>C</td>
<td>2.557800</td>
<td>1.473500</td>
<td>2.471900</td>
</tr>
<tr>
<td>H</td>
<td>2.109700</td>
<td>2.270300</td>
<td>1.869900</td>
</tr>
<tr>
<td>H</td>
<td>3.388000</td>
<td>1.900800</td>
<td>3.053600</td>
</tr>
<tr>
<td>H</td>
<td>1.796800</td>
<td>1.111700</td>
<td>3.171200</td>
</tr>
<tr>
<td>C</td>
<td>4.099200</td>
<td>0.943600</td>
<td>0.561100</td>
</tr>
<tr>
<td>H</td>
<td>4.606300</td>
<td>0.145800</td>
<td>-0.001300</td>
</tr>
<tr>
<td>H</td>
<td>4.860700</td>
<td>1.520900</td>
<td>1.103600</td>
</tr>
<tr>
<td>H</td>
<td>3.610600</td>
<td>1.607300</td>
<td>-0.159400</td>
</tr>
<tr>
<td>C</td>
<td>-1.318400</td>
<td>-2.424900</td>
<td>-2.208300</td>
</tr>
<tr>
<td>C</td>
<td>-0.291700</td>
<td>-3.282700</td>
<td>-2.475300</td>
</tr>
<tr>
<td>H</td>
<td>-0.356000</td>
<td>-4.129300</td>
<td>-1.781800</td>
</tr>
<tr>
<td>H</td>
<td>-0.231800</td>
<td>-3.696600</td>
<td>-3.492300</td>
</tr>
<tr>
<td>H</td>
<td>-1.207800</td>
<td>-2.689200</td>
<td>-2.404300</td>
</tr>
<tr>
<td>C</td>
<td>2.186700</td>
<td>-3.376700</td>
<td>-2.166500</td>
</tr>
<tr>
<td>H</td>
<td>3.116600</td>
<td>-2.803200</td>
<td>-2.053700</td>
</tr>
<tr>
<td>H</td>
<td>2.244000</td>
<td>-3.962600</td>
<td>-3.096400</td>
</tr>
<tr>
<td>H</td>
<td>2.104500</td>
<td>-4.070400</td>
<td>-1.318200</td>
</tr>
<tr>
<td>C</td>
<td>1.132400</td>
<td>-1.452800</td>
<td>-3.394400</td>
</tr>
<tr>
<td>H</td>
<td>0.259300</td>
<td>-0.797100</td>
<td>-3.485100</td>
</tr>
<tr>
<td>H</td>
<td>1.237300</td>
<td>-2.027300</td>
<td>-4.326100</td>
</tr>
<tr>
<td>H</td>
<td>2.023100</td>
<td>-0.824400</td>
<td>-3.279800</td>
</tr>
<tr>
<td>C</td>
<td>-1.466700</td>
<td>1.154400</td>
<td>0.662100</td>
</tr>
<tr>
<td>C</td>
<td>-1.823800</td>
<td>0.531400</td>
<td>-0.618000</td>
</tr>
<tr>
<td>C</td>
<td>-0.853000</td>
<td>1.000700</td>
<td>-1.570500</td>
</tr>
<tr>
<td>H</td>
<td>-0.827300</td>
<td>0.735200</td>
<td>-2.617300</td>
</tr>
<tr>
<td>C</td>
<td>0.051900</td>
<td>1.921000</td>
<td>-0.962300</td>
</tr>
<tr>
<td>C</td>
<td>-0.329800</td>
<td>1.993700</td>
<td>0.407000</td>
</tr>
<tr>
<td>H</td>
<td>0.169800</td>
<td>2.599300</td>
<td>1.147800</td>
</tr>
<tr>
<td>C</td>
<td>-2.163600</td>
<td>1.240000</td>
<td>2.027900</td>
</tr>
<tr>
<td>C</td>
<td>-2.917400</td>
<td>-0.037200</td>
<td>2.442200</td>
</tr>
<tr>
<td>H</td>
<td>-3.812000</td>
<td>-0.205700</td>
<td>1.837900</td>
</tr>
<tr>
<td>H</td>
<td>-3.242800</td>
<td>0.056600</td>
<td>3.488400</td>
</tr>
<tr>
<td>H</td>
<td>-2.261800</td>
<td>-0.909400</td>
<td>2.359600</td>
</tr>
<tr>
<td>C</td>
<td>-1.135700</td>
<td>1.536000</td>
<td>3.149900</td>
</tr>
<tr>
<td>H</td>
<td>-1.654200</td>
<td>1.534700</td>
<td>4.118600</td>
</tr>
<tr>
<td>H</td>
<td>-0.667600</td>
<td>2.520400</td>
<td>3.027900</td>
</tr>
<tr>
<td>H</td>
<td>-0.355200</td>
<td>0.777300</td>
<td>3.196900</td>
</tr>
<tr>
<td>C</td>
<td>-3.083600</td>
<td>-0.223900</td>
<td>-1.093300</td>
</tr>
<tr>
<td>C</td>
<td>-3.054400</td>
<td>-0.387700</td>
<td>-2.635800</td>
</tr>
<tr>
<td>H</td>
<td>-2.170600</td>
<td>-0.945900</td>
<td>-2.966500</td>
</tr>
<tr>
<td>H</td>
<td>-3.056600</td>
<td>0.588800</td>
<td>-3.139000</td>
</tr>
<tr>
<td>H</td>
<td>-3.948400</td>
<td>-0.942000</td>
<td>-2.952800</td>
</tr>
<tr>
<td>C</td>
<td>-3.269900</td>
<td>-1.640600</td>
<td>-0.510900</td>
</tr>
<tr>
<td>H</td>
<td>-4.262900</td>
<td>-2.019600</td>
<td>-0.797300</td>
</tr>
<tr>
<td>H</td>
<td>-3.180000</td>
<td>-1.678900</td>
<td>0.573500</td>
</tr>
<tr>
<td>H</td>
<td>-2.517400</td>
<td>-2.316200</td>
<td>-0.923100</td>
</tr>
<tr>
<td>C</td>
<td>-4.338700</td>
<td>0.635900</td>
<td>-0.791400</td>
</tr>
<tr>
<td>H</td>
<td>-4.194900</td>
<td>1.665800</td>
<td>-1.146000</td>
</tr>
<tr>
<td>H</td>
<td>-4.574400</td>
<td>0.667100</td>
<td>0.274900</td>
</tr>
<tr>
<td>H</td>
<td>-5.206500</td>
<td>0.204800</td>
<td>-1.312500</td>
</tr>
<tr>
<td>C</td>
<td>0.964200</td>
<td>2.876700</td>
<td>-1.715000</td>
</tr>
<tr>
<td>C</td>
<td>1.924600</td>
<td>2.144800</td>
<td>-2.671200</td>
</tr>
<tr>
<td>H</td>
<td>2.687900</td>
<td>1.593600</td>
<td>-2.112900</td>
</tr>
<tr>
<td>H</td>
<td>2.430800</td>
<td>2.872900</td>
<td>-3.322200</td>
</tr>
<tr>
<td>H</td>
<td>1.379500</td>
<td>1.432900</td>
<td>-3.302900</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for *Dalton Transactions* © The Royal Society of Chemistry 2012
(atom, x-, y-, z-positions in Å):

Structure of 1-Mn (low-spin)
(C₂ᵥ-Symm.) (atom, x-, y-, z-positions in Å):

Structure of 1-Mn (high-spin)

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>0.223309</td>
<td>-0.027098</td>
<td>-0.180800</td>
</tr>
<tr>
<td>C</td>
<td>-2.168600</td>
<td>1.176200</td>
<td>-0.448800</td>
</tr>
<tr>
<td>C</td>
<td>-1.322700</td>
<td>0.863200</td>
<td>-1.543300</td>
</tr>
<tr>
<td>H</td>
<td>-0.876200</td>
<td>1.595800</td>
<td>-2.205600</td>
</tr>
<tr>
<td>C</td>
<td>-1.203200</td>
<td>-0.567600</td>
<td>-1.722800</td>
</tr>
<tr>
<td>C</td>
<td>-2.092200</td>
<td>-1.153100</td>
<td>-0.736500</td>
</tr>
<tr>
<td>C</td>
<td>-2.661200</td>
<td>-0.076600</td>
<td>0.062900</td>
</tr>
<tr>
<td>C</td>
<td>-3.546100</td>
<td>-0.392400</td>
<td>1.123100</td>
</tr>
<tr>
<td>H</td>
<td>-3.961000</td>
<td>0.394000</td>
<td>1.749000</td>
</tr>
<tr>
<td>C</td>
<td>-3.908700</td>
<td>-1.715800</td>
<td>1.347400</td>
</tr>
<tr>
<td>H</td>
<td>-4.601900</td>
<td>-1.956400</td>
<td>2.152400</td>
</tr>
<tr>
<td>C</td>
<td>-3.390300</td>
<td>-2.758200</td>
<td>0.538600</td>
</tr>
<tr>
<td>H</td>
<td>-3.702600</td>
<td>-3.785200</td>
<td>0.723900</td>
</tr>
<tr>
<td>C</td>
<td>-2.484600</td>
<td>-2.489500</td>
<td>-0.481900</td>
</tr>
<tr>
<td>H</td>
<td>-2.101200</td>
<td>-3.305100</td>
<td>-1.089800</td>
</tr>
<tr>
<td>C</td>
<td>-2.537800</td>
<td>2.567800</td>
<td>0.036600</td>
</tr>
<tr>
<td>C</td>
<td>-2.106000</td>
<td>2.763400</td>
<td>1.510200</td>
</tr>
<tr>
<td>H</td>
<td>-2.567600</td>
<td>2.015800</td>
<td>2.166300</td>
</tr>
<tr>
<td>H</td>
<td>-2.397400</td>
<td>3.763900</td>
<td>1.863900</td>
</tr>
<tr>
<td>H</td>
<td>-1.016300</td>
<td>2.666200</td>
<td>1.600000</td>
</tr>
<tr>
<td>C</td>
<td>-1.854300</td>
<td>3.653300</td>
<td>-0.820600</td>
</tr>
<tr>
<td>H</td>
<td>-0.761200</td>
<td>3.558600</td>
<td>-0.789500</td>
</tr>
<tr>
<td>H</td>
<td>-2.123100</td>
<td>4.649000</td>
<td>-0.445000</td>
</tr>
<tr>
<td>H</td>
<td>-2.177000</td>
<td>3.648500</td>
<td>-0.988000</td>
</tr>
<tr>
<td>C</td>
<td>-0.770900</td>
<td>2.763200</td>
<td>-0.982000</td>
</tr>
<tr>
<td>H</td>
<td>-0.286000</td>
<td>2.469400</td>
<td>1.932900</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.527098</td>
<td>2.567000</td>
<td>0.626600</td>
</tr>
<tr>
<td>C</td>
<td>-1.169800</td>
<td>2.763600</td>
<td>1.510900</td>
</tr>
<tr>
<td>H</td>
<td>-0.567000</td>
<td>2.015900</td>
<td>2.161000</td>
</tr>
<tr>
<td>C</td>
<td>-1.016098</td>
<td>2.763200</td>
<td>1.526000</td>
</tr>
</tbody>
</table>
(atom, x-, y-, z-positions in Å):

Structure of 1-Fe

C 0.000000 0.000100 0.027600
C 1.405500 1.064600 1.117100
C 0.213500 1.833100 0.916900
H -0.407300 2.219400 1.711600
C -0.059300 2.005600 -0.475700
C 1.046000 1.389200 -1.187200
C 1.950700 0.814900 -0.200300
C 3.198000 0.260200 -0.627300
H 3.901000 0.128400 0.104200
C 3.532300 0.283800 -1.962700
H 4.493700 0.111900 -2.287000
C 2.626400 0.806900 -2.937500
H 2.909600 0.788100 -3.989100
C 1.402600 1.326700 -2.571500
H 0.734800 1.718400 -3.330500
C 2.153000 0.926400 2.438800
C 2.580000 0.525200 2.739000
H 3.120900 0.972300 1.898300
H 3.234700 0.541900 3.623000
H 1.705900 1.150700 2.947500
C 1.302900 1.457300 3.611900
H 0.337900 0.944100 3.675900
H 1.841300 1.305400 4.557800
H 1.110500 2.532600 3.494400
C 3.419400 1.822500 2.350200
H 3.134700 2.859200 2.123100
H 3.951200 1.807500 3.313100
H 4.105400 1.479000 1.567400
C -1.092900 2.980200 -1.024100
C -0.399000 4.367600 -1.089600
H 0.488600 4.322700 -1.735700
H -1.094600 5.116000 -1.498800
H -0.084300 4.690900 -0.087600
C -2.308000 3.092200 -0.079500
H -2.009500 3.417500 0.925500
H -3.010700 3.836400 -0.480600
H -2.824700 2.131500 0.000800
C -1.587200 2.598800 -2.438600
H -1.733500 1.520000 -2.527000
H -2.542600 3.100500 -2.648700
H -0.876200 2.924500 -3.208300
C 3.536600 2.965500 2.065300
H 1.268000 1.949300 3.232000
H -0.036900 -0.880000 3.327000
H 0.694400 -2.717600 1.562600

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2012
(atom, x-, y-, z-positions in Å):

Structure of 1-Co

atom, x-, y-, z-positions in Å:

Electronic Supplementary Material (ESI) for Dalton Transactions
This journal is © The Royal Society of Chemistry 2012
8. References
