Supporting Information of

Mixed-Valence [Fe^IFe^{II}] Hydrogenase Active Site Model Complexes Stabilized by a Bidentate Carborane bis-Phosphine Ligand

Michael Karnahl,^a Stefanie Tschierlei,^a Özlen F. Erdem,^b Sonja Pullen,^a Marie-Pierre Santoni,^a Edward J. Reijerse,^b Wolfgang Lubitz,^b and Sascha Ott^{*a}

UV/vis spectra of the *o*-carborane diiron complexes [Fe₂(dt)(CO)₄(BC)] 1-3:

Figure S 1 Absorption spectra of **1** (black), **2** (red), **3** (blue) dissolved in dichloromethane. The three complexes differ in their dithiolate bridge: pdt = 1,3-propyldithiolate = **1**, bdt = 1,2-benzenedithiolate = **2** and edt = 1,2-ethyldithiolate = **3**.

¹³C-NMR data (carbonyl region) of the dinuclear complexes $[Fe_2(dt)(CO)_4(BC)]$ 1-3 and of $[Fe(BC)(CO)_3]$ 5:

Table S 1 Selected ¹³C-NMR signals of $[Fe_2(dt)(CO)_4(BC)]$ (bridge = pdt 1, bdt 2, edt 3).

Compound	¹³ C-NMR*	
in CDCl ₃	δ / ppm	
1	210.07, 210.24	
1'	207.80	
2	209.76, 209.87	
2'	207.56	
3	218.47, 218.31	
3'	208.40	
5	216.90	
4'	205.10	

* The values of the hexacarbonyl precursors $[Fe_2(dt)(CO)_6]$ (dt = dithiolate, pdt = propyl-1,3-dt **1'**, bdt = benzene-1,2-dt **2'**, edt = ethyl-1,2-dt **3'** and cdt = *o*-carborane-1,2-dt **4'**) are given for comparison.

^{0a} Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden, Fax: (+46)-18-471-6844. Email: michael.karnahl@kemi.uu.se; sascha.ott@kemi.uu.se,

^b Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany

Crystallographic data of 5

Monocrystals of $[Fe(BC)(CO)_3]$ **5** were obtained by slow evaporation of a mixture of dichloromethane and n-hexane. The respective crystal structure data has been stored at the Cambridge Crystallographic Data Centre with the deposition number CCDC822991.

Table S 2 Crystallographic data and refinement details for 5

Compound	5	
Formula	C ₂₉ H ₃₀ B ₁₀ FeO ₃ P ₂	
M _w (g/mol); F(000)	652.42; 2672	
T (K); wavelength (Å)	100; 0.71073	
Crystal System	Orthorhombic	
Space Group	Pbca	
Unit Cell: a (Å)	10.7762(5)	
b (Å)	17.3586(8)	
c (Å)	33.5473(16)	
β (°)	90	
$V(Å^3); Z; d_{calcd.} (g/cm^3)$	6275.3(5); 8; 1.381	
θ range (°); completeness	2.25 to 27.50; 0.974	
collected reflections; Rint	122210; 0.0601	
unique reflections; Rint	9984; 0.069	
μ (mm ⁻¹); Abs. Corr.	0.615; Semi-empirical	
$R_1(F); wR(F^2) [I > 2\sigma(I)]$	0.0337; 0.0590	
$R_1(F)$; wR(F ²) (all data)	0.0813; 0.0930	
GoF(F ²)	0.929	
Residual electron		
density (e ⁻ /Å ³)	0.442 and -0.393	

Table S 3 Selected bond lengths (Å) and angles (°) for $[Fe(BC)(CO)_3]$ 5

Compound	5	
Fe(1)-P(1)	2.1948(5)	
Fe(1)-P(2)	2.1974(5)	
Fe(1)-CCO ^{<i>a</i>}	1.773(18)	
C=O _{all} ^b	1.1518(20)	
P(1)-Fe(2)-P(2)	90.821(17)	

 \overline{a} average over all three Fe(1)-CCO bonds, b average over all three C=O bonds

FTIR spectroelectrochemistry

Figure S 2 FTIR-SEC spectra recorded during oxidation of a 1.0 mM solution of 1 in CH_2Cl_2 under inert conditions. The negative bands correspond to the depletion of the starting material. The wavenumbers in the upper right corner represent the maxima of the corresponding IR bands.

¹H-NMR spectra of the dinuclear complexes [Fe₂(dt)(CO)₄(BC)] 1-3 in CDCl₃ solution:

Figure S 3¹H-NMR spectra (400 MHz, CDCl₃ solution, at 298 K) of the complexes 1-3.

³¹P{¹H}-NMR spectra of the dinuclear complexes [Fe₂(dt)(CO)₄(BC)] 1-3 in CDCl₃ solution:

Figure S 4 ³¹P{¹H}-NMR spectra (161.8 MHz, CDCl₃ solution) of the complexes 1-3.