Electronic Supplementary Information

Infrared Spectroscopic and Theoretical Studies of the OTiF₂, OZrF₂ and OHfF₂ Molecules with Terminal Oxo

Ligands

Yu Gong^a Lester Andrews,*^a Charles W. Bauschlicher, Jr.,^b K. Sahan Thanthiriwatte,^c and David A. Dixon^c

^aDepartment of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319. Email: <u>Isa@virginia.edu</u>

^b Mail Stop 230-3, Entry Systems and Technology Division, NASA Ames Research Center,

Moffett Field, CA 94035-0001.

^cDepartment of Chemistry, The University of Alabama, Tuscaloosa, Alabama, 35487-0336

Table S1. Vibrational Frequencies (cm⁻¹) Observed in Solid Argon and Calculated Modes (Infrared Intensities, km/mol)

for the OTiF Radical in the ²A' Ground State Using the same DFT Methods as for Table 1. ^a

			¹⁶ OTiF	¹⁸ OTiF				
	mode	obs.	calc.	obs.	calc.			
OTiF	Ti-O str. ^b	962.7	1021.7(289)	922.3	978.6 (273)			
	Ti-F str	609.4	626.8 (157)	608.6	626.0 (154)			
	O-Ti-F bend	not obs.	123.9 (31)	not obs.	120.9 (30)			

^aComputed structural parameters: Ti-O=1.626 Å, Ti-F= 1.851 Å, O-Ti-F=125.3°.

Table S2. CCSD(T) Calculated and Experimental Bond Distances, M-O Frequencies, Bond Dissociation Energies and Singlet-Triplet Splittings for Diatomic MO for M = Ti, Zr, and Hf.

Property	TiO calc	TiO expt	ZrO calc	ZrO expt	HfO calc	HfO expt
State	$^{3}\Delta$	$^{3}\Delta_{r}$	$^{1}\Sigma^{+}$	$^{1}\Sigma^{+}$	$^{1}\Sigma^{+}$	$^{1}\Sigma^{+}$
R (Å)	1.6391	1.6202 ^a	1.7194	1.7116 ^a	1.7198	1.72307 ^a
$\omega_{e}(cm^{-1})$	1003.3	1009.0 ^a	975.86	969.7 ^a	969.83	974.09 ^a
$\omega_e x_e (cm^{-1})$	4.59	4.498 ^a	3.29	4.9 ^a	3.09	3.228 ^a
$\mathrm{D_0}^0 (\mathrm{eV})$	6.76	6.87 ^a	7.84	7.85 ^a	8.36	8.19 ^a
		6.96 ± 0.1^{b}		7.94 ± 0.1^{b}		8.30 ± 0.13^{b}
		6.93 ^b				
$\Delta E(S-T)$ kcal/mol	-14.4	-16.2 ^{a,c}	2.8	4.9 ± 0.7^a	30.1	

^a Reference 58.

^b Reference 59.

 $^{c}{}^{3}\Delta_{r}$ - $^{1}\Sigma^{+}$. Calculated from the value for the $^{1}\Delta$ state (3440 ± 10 cm⁻¹) plus the $^{1}\Delta$ - $^{1}\Sigma^{+}$ energy difference of 2215.6 cm⁻¹.

Table S3. (CCSD(T)	Calculated	Properties	of MF ₂	for $M =$	Ti, Zr, H	Ηf
-------------	---------	------------	------------	--------------------	-----------	-----------	----

Property	Ti	Zr	Hf
Electronic State	$^{3}\Delta_{\mathrm{g}}$	${}^{3}B_{1}$	$^{1}A_{1}$
R(M-F) Å	1.832	1.920	1.864
<(FMF) °	180.0	138.9	124.9
M-F sym stretch cm ⁻¹	594.6	627.7	662.5
M-F asym stretch cm ⁻¹	754.5	641.9	683.3
F-M-F bend	$213(\pi)^{a}$	99.7	107.6

^a Due to symmetry breaking issues in the bends in the numerical second derivative calculations, only the symmetric and asymmetric stretches were taken from the CCSD(T) calculations. The bending frequency is taken from the MRCI calculations in Ref. 61.

Table S4. Electronic Energy Contribution to the Total Atomization Energies in kcal/mol for the Ground States of MO, MF₂, and MOF₂ (M=Ti, Zr, Hf).^{*a*}

molecule	$\Delta E_{(n=D)}$	$\Delta E_{(n=T)}$	$\Delta E_{(n=Q)}$	ΔE_{CBS}^{e}	$\Delta E_{(AWCTZ-}$	$\Delta E_{(AWCTZ-}$	$\Delta E_{(SR)}^{c,h}$	$\Delta E_{(PP,corr)}^{i}$	$\Delta E_{(CV)}$	$\Delta E_{(ZPE)}$	ΔE_{SO}	ΣD_0^{j}
					DK) ^{c,f}	PP) ^{c,g}						
TiOF ₂ ^b	426.56	435.91	441.30	444.61	437.81	439.75	-2.65	0.71	3.06	-4.31	-1.64	439.78
ZrOF ₂ ^c	461.04	474.86	480.80	484.33	475.14	475.09	-2.12	2.17	0.54	-3.83	-3.06	478.03
HfOF ₂ ^d	468.19	481.94	488.01	491.64	474.54	482.16	-2.11	-5.50	0.55	-3.82	-8.84	471.92
$\text{TiO}^{b}{}^{3}\Delta_{g}$	145.64	151.28	153.91	155.50	154.53	154.57	-0.58	0.54	2.58	-1.41	-0.86	155.77
$ZrO^{c}\Sigma^{+}$	173.75	180.56	182.75	184.00	181.04	180.78	-0.43	0.68	0.21	-1.40	-2.28	180.79
$\mathrm{HfO}^{d} {}^{1}\Sigma^{+}$	194.42	200.98	203.32	204.67	198.52	201.20	-0.43	-2.25	0.22	-1.39	-8.06	192.76
$\mathrm{TiF_2}^{b\ 3}\Delta_{\mathrm{g}}$	274.43	278.53	281.45	283.28	279.94	281.14	-1.85	0.65	2.44	-2.54	-1.42	280.56
$\operatorname{ZrF_2}^{c3}\operatorname{B_1}$	294.10	300.41	303.56	305.48	300.56	300.42	-1.62	1.77	0.30	-1.96	-2.84	301.13
$\mathrm{HfF_2}^{d \ 1}\mathrm{A}_1$	317.15	323.37	325.90	327.40	318.97	323.39	-1.54	-2.88	0.30	-2.08	-8.62	312.58

^{*a*} Each term calculated from the energy difference between the ground states of the atoms (${}^{3}F_{2}$ for Ti, Zr, and Hf) and the compound.

^{*b*} Geometries from CCSD(T) level with aV*n*Z-PP for Ti and aV*n*Z for O and F (n=D,T). Energies for n=Q obtained from CCSD(T)/ aVTZ-PP geometry.

^{*c,d*} Geometries from CCSD(T) level with awCV*n*Z-PP for Ti and aV*n*Z for O and F (n=D,T). Energies for n=Q obtained from CCSD(T)/ awCVTZ-PP geometry.

^e Extrapolated CCSD(T) energies with n = D, T, and Q using the composite approach described in the text.

^{*f*} Electronic energies calculated at CCSD(T)-DK/ awCVTZ-DK. For HfOF₂, the $5s^2$, $5p^6$, $4f^{14}$ of Hf and $1s^2$ of O and F were also correlated.

g Electronic energies calculated at CCSD(T)/ awCVTZ-PP. The $(n-1)s^2$, $(n-1)p^6$, of Ti (n=4), Zr(n=5), and Hf(n=4) and $1s^2$ of O and F were also correlated.

h MVD expectation values of the CISD/aVTZ-PP wave function.

 $i \Delta E_{(PP,corr)} = \Delta E_{(AWCTZ-DK)} - (\Delta E_{(AWCTZ-PP)} - \Delta E_{(SR)})$

 $j \Sigma D_0 = \Delta E_{elec}(CBS) + \Delta E_{SR} + \Delta E_{PP,corr} + \Delta E_{ZPE} + \Delta E_{CV} + \Delta E_{SO}$

$OTiF_2^a C_{2v}$	a ₁	1046.6	Ti=O stretch
	a ₁	662.6	Ti-F sym stretch
	a ₁	191.2	bend
	b ₁	70.9	out of plane inversion
	b ₂	781.7	Ti-F asym stretch
	b ₂	262.9	bend
$OZrF_2^{b}C_s$	a'	938.4	Zr=O stretch
	a'	643.0	Zr-F sym stretch
	a'	168.7	bend
	a'	81.0	out of plane inversion
	a"	613.6	Zr-F asym stretch
	a"	233.1	bend
$OHfF_2^{c}C_s$	a'	940.7	Hf=O stretch
	a'	617.2	Hf-F sym stretch
	a'	183.3	bend
	a'	112.4	out of plane inversion
	a"	614.8	Hf-F asym stretch
	a''	244.1	bend

Table S5. Vibrational frequencies of all the group 4 OMF₂ molecules calculated at CCSD(T) level

^a CCSD(T)/aug-cc-pwCVTZ/aug-cc-pwCVTZ-PP includes 1s, 2s, 2p electrons on F and O and 3s, 3p, 4s, and 3d electrons on Ti. ^b CCSD(T)/aug-cc-pwCVTZ/aug-cc-pwCVTZ-PP includes 1s, 2s, 2p electrons on F and O and 3s, 3p, 4s, and 3d electrons on Zr. ^c CCSD(T)/ aug-cc-pwCVTZ-DK includes 2s and 2p electrons on F and O and 4d, 4f, 5s, 5p, 6s, and 5d electrons on Hf.

Figure S1. Infrared spectra of the laser-ablated titanium atom and ${}^{18}\text{OF}_2$ (91% enriched) reaction products in solid argon:

(a) Ti + 1.0% ¹⁸OF₂ deposition for 60 min; (b) after annealing to 20 K; (c) after $\lambda > 220$ nm irradiation;

(d) after annealing to 30 K. The asterisks denote the 16-16, 16-18, and 18,18 oxygen isotopic absorptions

of CO₂ impurity in the matrix sample.

Figure S2. Selected bonding orbitals for CH₂TiF₂ from NBO analysis.

Figure S3. The oxygen in plane orbitals for OCF₂, OSiF₂ and OGeF₂.from NBO analysis of B3LYP orbitals.