Supporting Information

Triphenylene Derivatives: Chemosensors for Sensitive Detection of Nitroaromatic Explosives.

Vandana Bhalla*, Harshveer Arora, Hardev Singh and Manoj Kumar

Department of Chemistry, UGC Centre for Advanced Studies.
Guru Nanak Dev University, Amritsar, INDIA- 143005

Page No. Contents
S2 Spectral overlaps for compound 3 and 5
S3 Fluorescence spectra of compound 5 in different solvents
S4-S5 Fluorescence response of compound 3 with other nitroaromatic derivatives
S6-S7 Fluorescence response of compound 5 with other nitroaromatic derivatives
S8 Calculated Stern-Volmer constants for compounds 3 and 5 with various nitroaromatic derivatives
S9 1H NMR of compound 3
S10 13C NMR of compound 3
S11 MALDI-TOF mass spectrum of compound 3
S12 1H NMR of compound 5
S13 13C NMR of compound 5
S14 FAB Mass Spectrum of compound 5
S15 Comparison of derivative 5 with previous reports

S1
Spectral overlaps for compound 3 and 5.

Figure S1: Spectral overlap of the absorption spectrum of picric acid (red line) with the emission spectrum of compound 3 (blue line).

Figure S2: Spectral overlap of the absorption spectrum of picric acid (red line) with the emission spectrum of compound 5 (blue line)
Fluorescence spectra of compound 5 in different solvents

Intensity (a.u.)

Wavelength (nm)

THF
DCM
Cyclohexane
Fluorescence response of derivative 3 with other nitroaromatic derivatives

4-Nitrotoluene (90 equiv.)

Dinitrotoluene (260 equiv.)

Dinitrobenzene (200 equiv.)

Trinitrotoluene (300 equiv.)
Fluorescence response of derivative 3 with other nitroaromatic derivatives

- Benzoquinone (1500 equiv.)
- Dimethyldinitrobutane (1500 equiv.)
- Benzoic acid (1500 equiv.)
Fluorescence response of derivative 5 with other nitroaromatic derivatives

4-Nitrotoluene (75 equiv.)

Dinitrotoluene (110 equiv.)

Trinitrotoluene (140 equiv.)

Dinitrobenzene (80 equiv.)
Fluorescence response of derivative 5 with other nitroaromatic derivatives

Benzoquinone (2500 equiv.)

dimethyldinitrobutane (2500 equiv.)

Benzoic acid (2500 equiv.)
Calculated Stern-Volmer constant for compounds 3 and 5 with various nitroaromatic derivatives

<table>
<thead>
<tr>
<th>Calculated Ksv for Compound</th>
<th>PA</th>
<th>4-NT</th>
<th>DNT</th>
<th>TNT</th>
<th>DNB</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2.91×10^5 M$^{-1}$</td>
<td>1.85×10^4 M$^{-1}$</td>
<td>3.41×10^3 M$^{-1}$</td>
<td>2.4×10^3 M$^{-1}$</td>
<td>4.02×10^3 M$^{-1}$</td>
<td>1.81×10^3 M$^{-1}$</td>
</tr>
<tr>
<td>5</td>
<td>2.93×10^5 M$^{-1}$</td>
<td>1.95×10^4 M$^{-1}$</td>
<td>2.20×10^3 M$^{-1}$</td>
<td>8.29×10^3 M$^{-1}$</td>
<td>1.92×10^4 M$^{-1}$</td>
<td>1.32×10^4 M$^{-1}$</td>
</tr>
</tbody>
</table>

Table 2: Calculated Stern-Volmer constants for compounds 3 and 5 with various nitroaromatics
1H NMR of compound 3
13C NMR of compound 3
MALDI-TOF Mass Spectrum of compound 3.
1H NMR spectrum of Compound 5
13C NMR spectrum of compound 5
Mass Spectrum of compound 5
Table: 1 Comparison of derivative 5 with previous reports

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Reference</th>
<th>Detection limit</th>
<th>Calculated Stern-Volmer constant with PA</th>
<th>Contact mode detection of explosives with test strips.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Derivative 5</td>
<td>50 nM</td>
<td>2.93×10^5 M$^{-1}$ for 5</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>Dalton Trans., 2011, 40, 12333</td>
<td>*</td>
<td>2.0×10^4 M$^{-1}$ and 5.0×10^4 M$^{-1}$</td>
<td>No</td>
</tr>
</tbody>
</table>
| 3 | *Dalton Trans.*, 2011, 40, 2257 | * | 3.1×10^4 M$^{-1}$
1.9×10^4 M$^{-1}$ | No |
| 4 | *Chem. Commun.*, 2012, 48, 5007 | 0.87 µM | 9.9×10^4 M$^{-1}$ | No |
| 5 | *Polym. Chem.*, 2010, 1, 426 | 4.3 µM | 1.5×10^5 M$^{-1}$ | No |
| 6 | *Sensors and Actuators B*, 2012, 161 251. | * | 6.21×10^3 M$^{-1}$ | No |

* No data available