Electronic Supplementary Information

Synthesis, structural characterization and *in vitro* inhibitory studies against human breast cancer of the bis-(2,6-di-tert-butylphenol)tin(IV) dichloride and its complexes with heterocyclic thioamides.

D.B. Shpakovsky[a,b], C.N. Banti[a,c], G. Beaulieu-Houle[a,d], N. Kourkoumelis[e], M. Manoli[f]
M.J. Manos[f], A.J. Tasiopoulos[f], S.K. Hadjikakou*[a], E.R. Milaeva[b], K. Charalabopoulos[c,g], T. Bakas[h], I.S. Butler[d] and N Hadjiliadis[a]

[a] Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; [b] Chemistry Department Moscow State Lomonosov University, Moscow, Russian Federation; [c] Department of Experimental Physiology, Medical School, University of Ioannina, Greece; [d] Department of Chemistry, McGill University, 801 Sherbrooke, Montreal Quebec, Canada; [e] Medical Physics Laboratory, Medical School, University of Ioannina, Ioannina, Greece; [f] Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus; [g] Department of Physiology, Democritus University Medical School, Greece; [h] Physics of Material Laboratory, Department of Physics, University of Ioannina, Greece.

*All correspondence should be addressed to Associate Professor S.K. Hadjikakou; e-mail: shadjika@uoi.gr; tel. xx30-26510-08374 fax xx30-26510-08786
Figure S1. IR spectrum of 1.
Figure S2. IR spectrum of 2.
Figure S3. IR spectrum of 3.
Figure S4. IR spectrum of 4.
Figure S5. IR spectrum of 5.
Figure S6. Raman spectrum of 2.
Figure S7. Raman spectrum of 3.
Figure S8. Raman spectrum of 4.
Figure S9. Raman spectrum of 5.
Figure S10. 119Sn Mössbauer spectrum of 1.
Figure S11. 119Sn Mössbauer spectrum of 2.
Figure S12. 119Sn Mössbauer spectrum of 3.
Figure S13. ^{119}Sn Mössbauer spectrum of 4.
Figure S14. 119Sn Mößbauer spectrum of 5.
Figure S15. ^1H-NMR spectrum of 1 in CDCl$_3$.
Figure S16. 1H-NMR spectrum of 2 in CDCl$_3$.
Figure S17. 1H-NMR spectrum of 3 DMSO-d_6.
Figure S18. 1H-NMR spectrum of 4 in CDCl$_3$.
Figure S19. 1H-NMR spectrum of 5 in CDCl$_3$.
Figure S20. 13C-NMR spectrum of 1 in CDCl$_3$.
Figure S21. 13C-NMR spectrum of 2 in CDCl$_3$.
Figure S22. 13C-NMR spectrum of 3 in DMSO-d_6.
Figure S23. 13C-NMR spectrum of 4 in CDCl₃.
Figure S24. 13C-NMR spectrum of 5 in CDCl$_3$.
Figure S25. EPR spectrum of 1’ (toluene, 293 K).
Figure S26. EPR spectrum of 2' (toluene, 293 K), g 2.0041 a(2H) 2.00 G
Figure S27. EPR spectrum of 3' (toluene, 293 K).
Figure S28. EPR spectrum of 4’ (toluene, 293 K), g 2.0027
Figure S29. EPR spectrum of 5' (toluene, 293 K).
Figure S30. 119Sn-NMR spectrum of 2 in CDCl$_3$.