Carbon monoxide and carbon dioxide insertion chemistry of f-block N-heterocyclic carbene complexes

Polly L. Arnold,*a Zoe R. Turner,a,b Ian J. Casely,a,c Ronan Bellabarba,c and Robert P. Toozec

Experimental details and characterising data

Contents
1.1. General methods and instrumentation.. 1
1.2. Syntheses .. 2
 1. CO2 reactions ... 2
 i. Reaction of U(LM)N"2 with CO2; synthesis of [U(LM)N"(OSiMe3)(OCNSiMe3)]n 2
 ii. Reaction of U(LD)N"2 with CO2; synthesis of [U(LD)N"(OSiMe3)(OCNSiMe3)]n 2
 iii. Reaction of Y(LD)N"2 with CO2 .. 3
 iv. Reaction of Ce(LM)N"2 with CO2 .. 3
 v. Reaction of Ce(LD)N"2 with CO2 .. 3
 vi. Reaction of [Ce(LM)2N"] with CO2 .. 3
 2. COS reactions .. 3
 vii. Reaction of Ce(LM)N"2 with COS .. 3
 viii. Reaction of Ce(LM)2N" with COS; synthesis of [Ce(LM)2(OSiMe3)] .. 3
 3. CO reactions ... 4
 ix. Reaction of U(LD)N"2 with CO; synthesis of U(LD)N"(OC{CH2}SiMe2N{SiMe3}) 4
 x. Reaction of Y(LD)N"2 with CO .. 4
 xi. Reaction of Ce(LD)N"2 with CO ... 4
 xii. Attempted synthesis of U(LD)N"(OC{CH2}SiMe2N{SiMe3}) ... 4
 xiii. Reaction of UN"3Cl with CO ... 4
 xiv. Reaction of CeN"3 with CO ... 4
 4. Ph2CN2 reactions ... 5
 xv. Reaction of U(LD)N"2 with Ph2CN2; synthesis of U(LD)N"2(NCPh2) .. 5
1.3. Crystallography .. 5
1.4. References .. 6

1.1. General methods and instrumentation

All manipulations were carried out using standard Schlenk line or drybox techniques under an atmosphere of dinitrogen. Protio solvents were degassed by sparging with dinitrogen, dried by passing through a column of activated sieves and stored over potassium mirrors (hexanes, toluene, benzene) or activated 4 Å molecular sieves (thf). Deuterated solvents were dried over potassium (C6D6, C5D5N, C4D8O), distilled under reduced pressure, freeze-pump-thaw degassed three times prior to use.
1H NMR spectra were recorded at 298 K, unless otherwise stated, on Bruker DPX 360, AVA 400, DMX 500, AVA 500 or AVA 600 spectrometers and 13C(1H) or 13C spectra on the same spectrometers at operating frequencies of 90, 100, 125, 125 and 150 MHz respectively. Two dimensional 1H-1H and 13C-1H correlation experiments were used, when necessary, to confirm 1H and 13C assignments. All NMR spectra were referenced internally to residual protio solvent (1H) or solvent (13C) resonances and are reported relative to tetramethylsilane (δ = 0 ppm). Chemical shifts are quoted in δ (ppm) and coupling constants in Hertz.

Mass spectra were recorded by the mass spectrometry service of Edinburgh University’s Department of Chemistry. Elemental analyses were carried out at London Metropolitan University and Medac Ltd. Gas chromatographic data were collected using an Agilent Technologies 7890A GC system.

Syntheses of Y(LR)N$^-$2, 1Ce(LR)N$^-$2, 1Ce(LR)$_2$N$^-$, 1CeN$^-$3, 3UN$^-$3, 4UN$^-$3Cl, 5N$_2$CPh$_2$, 6 were by literature methods.

1.2. Syntheses

1. CO$_2$ reactions

i. Reaction of U(LM)N$^-$2 with CO$_2$; synthesis of [U(LM)N(O$^-$SiMe$_3$)(O=CSiMe$_3$)]$_n$

A dark blue solution of U(LM)N$^-$2 (540 mg, 0.66 mmol) in hexanes (15 ml) was freeze-pump-thaw degassed then an atmosphere of CO$_2$ was introduced at room temperature with vigorous stirring. A pale brown solution and precipitate formed immediately, which after 0.5 h changed to a pale green solution and almost colourless precipitate. Following filtration, the solid was washed with hexane (2 x 5 ml) and dried under reduced pressure, affording [U(LM)N(O$^-$SiMe$_3$)(O=CSiMe$_3$)]$_n$ as a very pale green solid (401 mg, 70.3 %).

Found: C 40.29, H 6.79, N 6.41. Calc. for C$_{29}$H$_{59}$N$_4$O$_3$Si$_4$U: C 40.28, H 6.76, N 6.96 %. 1H NMR (C$_6$D$_5$N); δ 52.92 43.52 26.17 15.59 (bs, 2H each, N-1CH$_2$-1CH$_2$-N, N-1CH$_2$-C, Ar-1CH), 22.35 10.11 (bs, 6H each, Ar-1o-1CH$_3$, C(CH$_3$)$_2$), 20.40 (bs, 3H, Ar-1p-1CH$_3$), the SiMe$_3$ groups appear as two very broad features in the baseline between δ = 6 and -2 ppm. IR (nujol) ν_{max}/ cm$^{-1}$: 2278(w), 2185(m), 1687(m), 1646(m), 1583(m), 1288(m), 1244(m), 1172(w), 904(m), 836(m), 749(m), 722(m), 680(w). UV λ_{max}/ nm (ε/ M$^{-1}$ cm$^{-1}$) THF: 601 (20), 809 (9), 999 (22), 1113 (26), 1505 (10) and 1654 (12).

ii. Reaction of U(LD)N$^-$2 with CO$_2$; synthesis of [U(LD)N(O$^-$SiMe$_3$)(OCNSiMe$_3$)]$_n$

To a freeze-pump-thaw degassed solution of U(LD)$_2$N$^-$ (0.20 g, 0.24 mmol) in benzene (5 mL) was added CO$_2$ (1 atm) to afford a brown-green solution. The reaction mixture was stirred for 24 h before the volatiles were removed in vacuo to afford [U(LD)N(O$^-$SiMe$_3$)(O=CSiMe$_3$)]$_n$ as a pale green solid. Yield: 0.053g (32 %). IR (nujol mull): 2183 cm$^{-1}$.

iii. Reaction of Y(LD)N$^-$2 with CO$_2$

To a freeze-pump-thaw degassed solution of Y(LD)$_2$N$^-$ (0.011 g, 0.015 mmol) in C$_6$D$_5$ (0.5 mL) in a J-Young Teflon valve NMR tube was added CO$_2$ (1 atm) to afford clear, colourless solution and colourless precipitate immediately. 1H NMR spectral analysis of the solution showed broad, unassignable resonances across the range 10 – 0 ppm and traces of HLD. The solid was isolated by
filtration, dried \textit{in vacuo} and redissolved in C\textsubscript{5}D\textsubscript{5}N. The 1H NMR spectrum indicated only the presence of HLD and some broad resonances which could not be assigned.

iv. **Reaction of Ce(LM)N2+ with CO\textsubscript{2}\)**

To an orange freeze-pumped thawed solution of Ce(LM)N2+ (15 mg, 0.02 mmol) in C\textsubscript{6}D\textsubscript{6} (0.7 mL) CO\textsubscript{2} was added at room temperature. The colour of the solution turns pale orange/pink. After 12 h an orange solid had precipitated. The precipitate was washed with hexanes and dried \textit{in vacuo} affording 8 mg of an orange solid that was insoluble in aromatic NMR solvents. When the reaction is carried out in THF, a yellow precipitate starts to form as soon as the CO\textsubscript{2} is added; no resonances apart from the THF could be seen in the 1H NMR spectrum. Removal of the THF and addition of pyridine gives a pale yellow solution that shows no resonances in the 1H NMR spectrum.

v. **Reaction of Ce(LD)N2+ with CO\textsubscript{2}**

To a freeze-pump-thaw degassed solution of Ce(LD)N2+ (0.015 g, 0.020 mmol) in C\textsubscript{6}D\textsubscript{6} (0.5 mL) in a J-Young Teflon valve NMR tube was added CO\textsubscript{2} (1 atm) to afford a yellow solution and pale yellow precipitate immediately. 1H NMR spectral analysis of the solution showed two broad resonances across a range of 10.00 – 0.00 ppm. The solid was isolated by filtration, dried \textit{in vacuo} and redissolved in C\textsubscript{5}D\textsubscript{5}N. The 1H NMR spectrum indicated only HLD.

vi. **Reaction of [Ce(LM)\textsubscript{2}N2+] with CO\textsubscript{2}**

To a yellow freeze-pumped thawed solution of Ce(LM)\textsubscript{2}N2+ (7 mg, 0.01 mmol) in THF (0.7 mL) CO\textsubscript{2} was added at room temperature. A colourless solid starts to precipitate immediately after addition. Removal of the volatiles in vacuum afforded a yellow solid that was soluble in pyridine gave a pale yellow solution that showed no assignable resonances in the 1H NMR spectrum.

2. **COS reactions**

vii. **Reaction of Ce(LM)N2+ with COS**

Under the conditions described for the reaction of Ce(LM)\textsubscript{2}N2+ with COS, a yellow solution of Ce(LM)N2+ was treated with stoichiometric COS. No reaction was observed under these conditions.

viii. **Reaction of Ce(LM)\textsubscript{2}N2+ with COS; synthesis of [Ce(LM)\textsubscript{2}(OSiMe\textsubscript{3})]**

COS (200 ppm in N\textsubscript{2}) (6L, 0.05 mmol) was bubbled through a yellow solution of Ce(LM)\textsubscript{2}N2+ (40 mg, 0.05 mmol) in toluene (5 mL) with a fixed flow regulator (0.5 L/min) for 12 minutes. A pale yellow precipitate formed upon addition. Removal of the volatiles in \textit{vacuo} afforded 38 mg of a pale yellow solid that was insoluble in aromatic NMR solvents and is a mixture of products. An IR spectrum of the afforded product shows a resonance at 2278 cm-1 which is assigned as the isothiocyanate byproduct Me\textsubscript{3}Si-N=C=S. IR (nujol); \textbf{\textit{\nu}} (cm-1): 2278 (m).
3. CO reactions

ix. Reaction of U(L^D)N''_2 with CO; synthesis of U(L^D)N''(OC(CH_2)SiMe_2N{SiMe}_3)

To a freeze-pump-thaw degassed solution of U(L^D)_2N'' (0.23 g, 0.26 mmol) in benzene (10 mL) was added CO (1 atm). The reaction mixture was heated to 80 °C for 7 days during which time the solution became dark brown in colour. The volatiles were removed in vacuo to afford a brown solid. Recrystallisation from toluene at -20 °C afforded U(L^D)N''(OC(CH_2)SiMe_2N{SiMe}_3) as a light brown microcrystalline solid. Yield: 0.16 g, (68 %). Single crystals suitable for an X-ray diffraction study were grown from a saturated toluene solution at -20 °C. \(^1\)H NMR (C_6D_6, 360 MHz): xx ppm. Anal. Found (calcd for C_{32}H_{64}N_4O_2Si_4U): C, 43.22 (43.32); H, 7.20 (7.27); N, 6.41 (6.31).

x. Reaction of Y(L^D)N''_2 with CO

To a freeze-pump-thaw degassed solution of Y(L^D)_2N'' (0.024 g, 0.034 mmol) in C_6D_6 (0.5 mL) in a J-Young Teflon valve NMR tube was added CO (1 atm) to afford a clear, yellow solution. The \(^1\)H NMR spectrum indicated that no reaction had taken place at room temperature or on heating to 80 °C for 16 h.

xi. Reaction of Ce(L^D)N''_2 with CO

To a freeze-pump-thaw degassed solution of Ce(L^D)_2N'' (0.024 g, 0.031 mmol) in C_6D_6 (0.5 mL) in a J-Young Teflon valve NMR tube was added CO (1 atm) to afford a clear, yellow solution. The \(^1\)H NMR spectrum indicated that no reaction had taken place at room temperature or on heating to 80 °C for 16 h.

xii. Attempted synthesis of U(L^D)N''(CH_2)SiMe_2N(SiMe)_3)

A solution of U(L^D)_2N'' (0.021 g, 0.024 mmol) in C_6D_6 (0.5 mL) in a J-Young Teflon valve NMR tube was placed under a partial static vacuum and heated to 80 °C for 7 days. The \(^1\)H NMR spectrum indicated U(L^D)_2N'' as the major product, minor new resonances across a range of 86.53 – 68.00 ppm and no resonance corresponding to H_2 were observed.

xiii. Reaction of UN''_3Cl with CO

To a freeze-pump-thaw degassed solution of UN''_3Cl (0.009 g, 0.012 mmol) in C_6D_6 (0.5 mL) in a J-Young Teflon valve NMR tube was added CO (1 atm). No reaction was shown to take place at room temperature.

xiv. Reaction of CeN''_3 with CO

To a freeze-pump-thaw degassed solution of CeN''_3 (0.011 g, 0.018 mmol) in C_6D_6 (0.5 mL) in a J-Young Teflon valve NMR tube was added CO (1 atm). No reaction was shown to take place at room temperature or on heating to 80 °C for 16 h.
4. \(\text{Ph}_2\text{CN}_2 \) reactions

xv. Reaction of \(\text{U}(L\text{D})\text{N}^\text{\(2\)}} \) with \(\text{Ph}_2\text{CN}_2 \); synthesis of \(\text{U}(L\text{D})\text{N}^\text{\(2\)}}(\text{NCPh}_2) \)

To a solution of \(\text{U}(L\text{D})\text{N}^\text{\(2\)}} (0.15 g, 0.17 mmol) in hexanes (10 mL) was added a solution of \(\text{Ph}_2\text{CN}_2 \) (0.035 g, 0.17 mmol) in hexanes (2 mL) to afford a dark brown solution. The reaction mixture was stirred for 2 h and then the volatiles were removed under reduced pressure to yield a brown solid. Attempted recrystallisation from toluene at -20 °C afforded both pale brown \(\text{U}(L\text{D})\text{N}^\text{\(2\)}}(=\text{NCPh}_2) \) and colourless \(\text{H}_2\text{NCHPh}_2 \) as diffraction-quality single crystals which have very similar solubility and thus were not separated by fractional recrystallisation.

1.3. Crystallography

X-ray crystallographic data were collected using graphite monochromated Mo-K\(\alpha \) radiation (\(\lambda = 0.71073 \) Å). Using the WinGX suite of programs, all structures were solved using direct methods and refined using a full-matrix least square refinement on \(|F|^2 \) using SHELXL-97. Unless otherwise stated, all non-hydrogen atoms refined with anisotropic displacement parameters and hydrogen atoms were placed using a riding model. The structural model of \(\text{U}(L\text{D})\text{N}^\text{\(2\)}}(\text{OC}\{\text{CH}_2\} \text{SiMe}_2\text{N}\{\text{SiMe}_3\}) \) was refined using mild similarity restraints on the displacement ellipsoids of the trimethylsilyl group containing Si1. This structure also contains one molecule of benzene solvent in the asymmetric unit. The benzene was refined using a two part disorder model with an occupancy ratio of 0.546:0.454(14). The carbon atoms of each part were fitted to a regular hexagon and refined isotropically.

<table>
<thead>
<tr>
<th></th>
<th>(\text{U}(L\text{D})\text{N}^\text{(2)}}(\text{OC}{\text{CH}_2} \text{SiMe}_2\text{N}{\text{SiMe}_3}))</th>
<th>(\text{U}(L\text{D})\text{N}^\text{(2)}}(\text{NCPh}_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>(\text{C}{32}\text{H}{65}\text{N}_4\text{O}_2\text{Si}_4\text{U})</td>
<td>(\text{C}{44}\text{H}{75}\text{N}_5\text{O}_3\text{Si}_4\text{U} 0.5(\text{C}_6\text{H}_6))</td>
</tr>
<tr>
<td>CCDC number</td>
<td>892962</td>
<td>892963</td>
</tr>
<tr>
<td>(M_r)</td>
<td>888.27</td>
<td>1079.53</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>Triclinic (\text{P}-1)</td>
<td>Monoclinic (\text{P}21/\text{n})</td>
</tr>
<tr>
<td>**Temperature (K) **</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>(a, b, c (\text{Å}))</td>
<td>10.5064(2), 12.1604 (3), 19.8038(4)</td>
<td>13.329(4), 21.293(7), 18.742 (6)</td>
</tr>
<tr>
<td>(\alpha, \beta, \gamma (\degree))</td>
<td>74.810(1), 77.868(1), 86.530(1)</td>
<td>90, 97.586 (19), 90</td>
</tr>
<tr>
<td>(V (\text{Å}^3))</td>
<td>2387.20(9)</td>
<td>5272.76(3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(\mu (\text{mm}^{-1}))</td>
<td>3.53</td>
<td>3.21</td>
</tr>
<tr>
<td>Crystal shape and colour</td>
<td>Brown plate</td>
<td>Red block</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.32 x 0.22 x 0.14</td>
<td>0.26 x 0.10 x 0.06</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo (\text{K}\alpha)</td>
<td>Mo (\text{K}\alpha)</td>
</tr>
<tr>
<td>Diffractometer</td>
<td>Bruker \textit{SMART} \textit{APEX CCD area detector}</td>
<td>Bruker \textit{SMART} \textit{APEX CCD area detector}</td>
</tr>
<tr>
<td>Scan method</td>
<td>(\phi) and (\phi) scans</td>
<td>(\phi) and (\phi) scans</td>
</tr>
</tbody>
</table>
Absorption correction

<table>
<thead>
<tr>
<th></th>
<th>Multi-scan</th>
<th>Multi-scan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SADABS</td>
<td>SADABS</td>
</tr>
<tr>
<td>(\theta_{\text{max}}, \theta_{\text{min}} (^\circ))</td>
<td>30.5, 1.7</td>
<td>26.4, 1.8</td>
</tr>
<tr>
<td>(T_{\text{min}}, T_{\text{max}})</td>
<td>0.3365, 0.4330</td>
<td>0.5837, 0.7454</td>
</tr>
<tr>
<td>Number of measured,</td>
<td>39388, 13332, 12491</td>
<td>67958, 10820, 9337</td>
</tr>
<tr>
<td>independent and observed (</td>
<td>I > 2s(I)</td>
<td>) reflections</td>
</tr>
<tr>
<td>(R_{\text{int}})</td>
<td>0.039</td>
<td>0.067</td>
</tr>
<tr>
<td>(R[F^2 > 2\sigma(F^2)], wR(F^2), S)</td>
<td>0.057, 0.165, 1.57</td>
<td>0.042, 0.102, 1.04</td>
</tr>
<tr>
<td>Number of reflections</td>
<td>13332</td>
<td>10820</td>
</tr>
<tr>
<td>Number of parameters</td>
<td>405</td>
<td>541</td>
</tr>
<tr>
<td>Number of restraints</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H atom treatment</td>
<td>Riding</td>
<td>Riding</td>
</tr>
<tr>
<td>((\Delta/\sigma)_{\text{max}})</td>
<td>0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (\text{eÅ}^{-3}))</td>
<td>4.90, −1.89</td>
<td>2.89, −1.11</td>
</tr>
</tbody>
</table>

References