Electronic Supplementary Information

Magnetic properties of two 2D complexes based on 1D chain containing [Fe(bpy)(CN)₄]⁻⁻ unit

Xiao-Jiao Song, Mohd. Muddassir, Ying Chen, Hui-Sheng Wang, You Song* and Xiao-Zeng You

Fig. S1 IR spectra of complex 1.

Fig. S2 IR spectra of complex 2.
Fig. S3 The drawing of the coordination environment ellipse for complex 2. H atoms and H$_2$O molecules are omitted for clarity. Symmetry code: (a) $-1+x$, y, z; (b) $2-x$, $2-y$, $1-z$; (c) $2-x$, $2-y$, $2-z$.

Fig. S4 Side view of the 1D 2,4-ribbon double zigzag chain for complex 2. H atoms and H$_2$O molecules are omitted for clarity.

Fig. S5 Side view of 2D layer for 2. Atoms not involved in bridging are omitted for clarity.
Figure S6 The X-band EPR spectra of 2 at 110K. Parameters: $g_\parallel = 2.07-2.08, g_\perp = 2.14$.

Fig. S7 Real (χ'_M) and imaginary (χ''_M) ac susceptibilities in 50e applied ac field at different frequencies for 1.

Fig. S8 χ'_M and χ''_M ac susceptibilities in $H_{dc} = 0$ and an $H_{ac} = 50e$ at different frequencies for 2.
Fig. S9 The plot of dM/dH vs H for complex 1.

Fig. S10 The plot of dM/dH vs H for complex 2.

Fig. S11 χ_M^{-1} vs T in an applied field of 2 kOe for 1 (square) and 2 (circle). The red solid lines correspond to the best fit to the Curie-Weiss law.