Synthesis and *rac*-lactide ring-opening polymerisation studies of new alkaline earth tetrahydroborate complexes

Richard A. Collins, Junjuda Unruangsri and Philip Mountford

SUPPORTING INFORMATION

Figure S1. Displacement ellipsoid plot (20% probability) of Ca $\{HC(C(Me)NAr')_2\}(BH_4)(THF)_2$ (**2**, one of two crystallographically-independent molecules). C-bound H atoms omitted for clarity, and other H atoms drawn as spheres of an arbitrary radius.

Equivs <i>rac-</i> LA	Time (mins)	Conversion (%)	$M_{\rm n}$ $({ m GPC})^a$	$M_{\rm n}$ (calcd.) ^b	PDI	Pr
20	1	90	4,380	2,600	1.43	
20	5	93	4,200	2,680	1.46	0.86
50	1	76	7,870	5,480	1.70	
50	5	93	7,540	6,680	1.74	0.83
100	1	73	13,070	10,530	1.65	
100	5	88	13,070	12,750	1.70	
100	30	92	12,940	13,270	1.75	0.82
150	1	70	17,180	15,060	1.65	
150	5	90	18,500	19,390	1.63	
150	30	94	15,950	20,400	1.81	0.80
200	1	74	22,330	21,270	1.46	
200	5	87	23,250	25,060	1.58	
200	30	91	22,970	26,370	1.62	0.76
250	1	69	23,660	24,850	1.47	
250	5	91	25,550	32,810	1.55	
250	30	92	26,160	33,200	1.64	0.74
300	1	60	22,720	26,150	1.47	
300	5	86	26,670	37,240	1.59	
300	30	91	28,370	39,350	1.55	0.77

Table S1. Further details of the ROP of *rac*-LA using $Mg\{HC(C(Me)NAr')_2\}(BH_4)(THF)$ (1).

Conditions: $[rac-LA]_0$: $[1]_0 = 20, 50, 100, 150, 200, 250, 300, 6 mL THF at 23 °C, <math>[rac-LA]_0 = 0.5$ M. ^{*a*} Molecular weights (g mol⁻¹) determined from GPC using the appropriate Mark-Houwink corrections. ^{*b*} Expected M_n (g mol⁻¹) for 1 chain growing per metal centre at maximum percentage conversion determined by NMR spectroscopy.

Time	Conversion	$M_{ m n}$	$M_{ m n}$	PDI
(mins)	(%)	$(GPC)^a$	$(calcd.)^b$	
0.5	22	2,160	3,110	1.15
1	24	2,520	3,500	1.18
2	29	2,810	4,230	1.21
4	36	3,230	5,250	1.21
6	40	3,600	5,800	1.28
8	46	3,940	6,560	1.29
12	52	4,200	7,530	1.36
16	56	4,660	8,130	1.37
20	62	4,760	9,010	1.32
30	74	4,990	10,590	1.56
50	82	5,100	11,850	1.72
70	88	5,230	12,650	1.79
90	91	5,350	13,160	1.79

Table S2. Further details of the ROP of *rac*-LA using $Ca\{HC(C(Me)NAr')_2\}(BH_4)(THF)_2$ (2).

Conditions: $[rac-LA]_0$: $[2]_0 = 100:1$, 6 mL THF at 23 °C, $[rac-LA]_0 = 0.5$ M. ^{*a*} Molecular weights (g mol⁻¹) determined from GPC using the appropriate Mark-Houwink corrections. ^{*b*} Expected M_n (g mol⁻¹) for 1 chain growing per metal centre at maximum percentage conversion determined by NMR spectroscopy.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is O The Royal Society of Chemistry 2012

Figure S2. MALDI-ToF mass spectra of the PLA formed with $Mg\{HC(C(Me)NAr')_2\}(BH_4)(THF)$ (1). The cationization agent was potassium trifluoroacetate.

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2012

Figure S3. MALDI-ToF mass spectra of the PLA formed with Ca{HC(C(Me)NAr')₂}(BH₄)(THF)₂(2). The cationization agent was potassium trifluoroacetate.

Figure S4. Conversion of *rac*-LA *vs* time using $Ca\{HC(C(Me)NAr')_2\}(BH_4)(THF)_2$ (2). Conditions: 6 mL THF, RT, [*rac*-LA]_0:[2]_0 = 100.

Figure S5. Non-linear 2^{nd} order kinetics plot for the polymerisation of *rac*-LA Ca{HC(C(Me)NAr')₂}(BH₄)(THF)₂ (**2**). Conditions: 6 mL THF, RT, [*rac*-LA]₀:[**2**]₀ = 100. The corresponding 1^{st} order ln plot was also non-linear.

Time	Conversion	$M_{ m n}$	$M_{ m n}$	PDI
(mins)	(%)	$(GPC)^a$	$(calcd.)^b$	
30	26	2,390	3,780	1.33
60	39	2,400	5,630	1.27
90	47	2,750	6,790	1.28
120	54	3,120	7,780	1.27
150	60	3,420	8,720	1.29
180	65	3,690	9,360	1.27
210	70	3,850	10,150	1.28
240	76	4,140	10,960	1.29
270	78	4,220	11,270	1.30
300	83	4,350	11,910	1.30
330	83	4,520	11,970	1.27
360	87	4,570	12,470	1.29
390	88	4,610	12,720	1.25
420	90	4,630	12,910	1.31
450	90	4,510	12,990	1.27

Table S3. Further details of the ROP of *rac*-LA using Mg{HC(P(Ph₂)NAr')₂}(BH₄)(THF)₂ (4).

Conditions: [rac-LA]:[4] = 100:1, 6 mL THF at 23 °C, $[rac-LA]_0 = 0.5$ M. ^{*a*} Molecular weights (g mol⁻¹) determined from GPC using the appropriate Mark-Houwink corrections. ^{*b*} Expected M_n (g mol⁻¹) for 1 chain growing per metal centre at the given conversion.

Figure S6. M_n (GPC) vs. equivalents rac-LA converted using Mg{HC(P(Ph₂)NAr')₂}(BH₄)(THF)₂ (4). The dotted line is that expected for 1 PLA chain per metal centre. Conditions: 6 mL THF, RT, $[rac-LA]_0$:[4]₀ = 100.

Figure S7. Conversion of *rac*-LA *vs* time using $Mg\{HC(P(Ph_2)NAr')_2\}(BH_4)(THF)_2$ (4). Conditions: 6 mL THF, RT, [*rac*-LA]_0:[4]_0 = 100.

Figure S8. First order ln plot for consumption of *rac*-LA using Mg{HC(P(Ph₂)NAr')₂}(BH₄)(THF)₂ (4). $R^2 = 0.979$, $k_{app} = 0.34(2)$ h⁻¹. Conditions: 6 mL THF, RT, [*rac*-LA]₀:[4]₀ = 100.

Table S4. X-ray data collection and processing parameters for Mg{HC(C(Me)NAr')₂}(BH₄)-(THF) (1) and M{HC(C(Me)NAr')₂}(BH₄)(THF)₂ (M = Ca (2) or Sr (3)).

compound		1	2	3
empirical formula		$C_{33}H_{53}BMgN_2O$	$C_{37}H_{61}BCaN_2O_2$	$C_{37}H_{61}BN_2O_2Sr$
fw		528.91	616.79	664.33
temp / K		150	150	150
wavelength / Å		1.54180	0.71073	1.54180
space group		P 1	$P \overline{1}$	$P \overline{1}$
a / Å		8.9350(6)	14.6535(2)	14.6050(4)
<i>b</i> / Å		16.6750(12)	15.6432(2)	15.7037(4)
<i>c</i> / Å		22.6408(15)	17.6883(3)	17.8465(3)
α / deg		79.081(6)	75.6264(6)	76.402(2)
β / deg		90.008(5)	81.3505(6)	81.680(2)
γ / deg		82.717(6)	70.8144(7)	70.540(2)
V / Å ³		3284.5(4)	3699.07(10)	3741.29(16)
Ζ		4	4	4
d (calcd) / Mg	g m ⁻³	1.070	1.107	1.179
abs coeff / m	m ⁻¹	0.646	0.202	2.230
R indices: ^a	$R_1 =$	0.0496	0.0424	0.0326
	$R_{\rm w} =$	0.0551	0.0407	0.0399

^{*a*} $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|; R_w = \sqrt{\{\Sigma w (|F_0| - |F_c|)^2 / \Sigma w |F_0|^2\}}$ for data with I > 3 σ (I).