Supplementary Materials

The open framework compound \(\text{Ni}_{15}\text{Te}_{12}\text{O}_{34}\text{Cl}_{10} \) - synthesis, crystal structure and magnetic properties

Dong Zhang, Mats Johnsson, Sven Lidin, and Reinhard K. Kremer

Table S1 Atomic coordinates and Equivalent Isotropic Displacement Parameters (Å\(^2\)) for \(\text{Ni}_{15}\text{Te}_{12}\text{O}_{34}\text{Cl}_{10} \).

<table>
<thead>
<tr>
<th>Atom</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U(\text{eq}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te(1)</td>
<td>0.92985(4)</td>
<td>0.93140(4)</td>
<td>-0.18534(4)</td>
<td>0.00705(11)</td>
</tr>
<tr>
<td>Te(2)</td>
<td>0.89314(4)</td>
<td>0.81794(4)</td>
<td>0.25306(4)</td>
<td>0.00819(11)</td>
</tr>
<tr>
<td>Te(3)</td>
<td>0.72145(4)</td>
<td>0.7164(4)</td>
<td>-0.10159(4)</td>
<td>0.00692(11)</td>
</tr>
<tr>
<td>Te(4)</td>
<td>0.76483(4)</td>
<td>0.20708(4)</td>
<td>0.01113(4)</td>
<td>0.00670(11)</td>
</tr>
<tr>
<td>Te(5)</td>
<td>0.44335(4)</td>
<td>-0.04559(4)</td>
<td>0.38061(4)</td>
<td>0.00734(11)</td>
</tr>
<tr>
<td>Te(6)</td>
<td>-0.05734(4)</td>
<td>0.44296(4)</td>
<td>0.38305(4)</td>
<td>0.00744(11)</td>
</tr>
<tr>
<td>Ni(1)</td>
<td>0.96673(9)</td>
<td>0.61832(9)</td>
<td>0.00748(18)</td>
<td>0.00784(18)</td>
</tr>
<tr>
<td>Ni(2)</td>
<td>0.79809(9)</td>
<td>0.41108(9)</td>
<td>0.16836(8)</td>
<td>0.00817(18)</td>
</tr>
<tr>
<td>Ni(3)</td>
<td>0.42521(9)</td>
<td>0.78789(9)</td>
<td>0.17096(7)</td>
<td>0.00797(18)</td>
</tr>
<tr>
<td>Ni(4)</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0.0066(2)</td>
</tr>
<tr>
<td>Ni(5)</td>
<td>0.24998(9)</td>
<td>0.55773(9)</td>
<td>0.25017(8)</td>
<td>0.00899(18)</td>
</tr>
<tr>
<td>Ni(6)</td>
<td>0.54480(9)</td>
<td>0.25936(9)</td>
<td>0.24556(8)</td>
<td>0.00967(19)</td>
</tr>
<tr>
<td>Ni(7)</td>
<td>0.62121(9)</td>
<td>-0.03322(9)</td>
<td>0.00734(18)</td>
<td>0.00734(18)</td>
</tr>
<tr>
<td>Ni(8)</td>
<td>0.26769(9)</td>
<td>0.26255(9)</td>
<td>0.46575(8)</td>
<td>0.00946(18)</td>
</tr>
<tr>
<td>Cl(1)</td>
<td>0.60835(18)</td>
<td>0.59434(18)</td>
<td>0.27183(15)</td>
<td>0.0142(3)</td>
</tr>
<tr>
<td>Cl(2)</td>
<td>0.21565(18)</td>
<td>0.76308(18)</td>
<td>0.33662(15)</td>
<td>0.0143(3)</td>
</tr>
<tr>
<td>Cl(3)</td>
<td>0.77090(19)</td>
<td>0.20744(19)</td>
<td>0.33189(15)</td>
<td>0.0168(3)</td>
</tr>
<tr>
<td>Cl(4)</td>
<td>0.4135(2)</td>
<td>0.4067(2)</td>
<td>0.39368(18)</td>
<td>0.0211(4)</td>
</tr>
<tr>
<td>Cl(5)</td>
<td>0.11152(18)</td>
<td>0.13897(18)</td>
<td>0.45624(17)</td>
<td>0.0169(4)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.0260(5)</td>
<td>0.0166(5)</td>
<td>-0.1342(4)</td>
<td>0.0113(10)</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.7454(5)</td>
<td>0.0274(5)</td>
<td>-0.0820(4)</td>
<td>0.0099(9)</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.0098(5)</td>
<td>0.7482(5)</td>
<td>-0.0831(10)</td>
<td>0.0113(10)</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.0680(5)</td>
<td>0.6742(5)</td>
<td>0.1762(4)</td>
<td>0.0100(9)</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.8013(5)</td>
<td>0.8049(5)</td>
<td>0.1416(4)</td>
<td>0.0108(9)</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.8429(5)</td>
<td>0.5564(5)</td>
<td>0.0052(4)</td>
<td>0.0095(9)</td>
</tr>
<tr>
<td>O(7)</td>
<td>0.5719(5)</td>
<td>0.8292(5)</td>
<td>0.0092(4)</td>
<td>0.0102(9)</td>
</tr>
<tr>
<td>O(8)</td>
<td>0.6276(5)</td>
<td>0.6061(5)</td>
<td>-0.1301(4)</td>
<td>0.0079(9)</td>
</tr>
<tr>
<td>O(9)</td>
<td>0.6623(5)</td>
<td>0.3691(5)</td>
<td>0.1013(4)</td>
<td>0.0088(9)</td>
</tr>
<tr>
<td>O(10)</td>
<td>0.6267(5)</td>
<td>0.3357(5)</td>
<td>-0.0995(4)</td>
<td>0.0075(9)</td>
</tr>
<tr>
<td>O(11)</td>
<td>0.6463(5)</td>
<td>0.1199(5)</td>
<td>0.1303(4)</td>
<td>0.0106(9)</td>
</tr>
<tr>
<td>O(12)</td>
<td>0.4681(5)</td>
<td>-0.0664(5)</td>
<td>0.2201(4)</td>
<td>0.0107(9)</td>
</tr>
<tr>
<td>O(13)</td>
<td>0.6347(5)</td>
<td>-0.0999(5)</td>
<td>0.4030(4)</td>
<td>0.0151(10)</td>
</tr>
<tr>
<td>O(14)</td>
<td>0.4080(5)</td>
<td>0.1553(5)</td>
<td>0.3327(4)</td>
<td>0.0109(9)</td>
</tr>
<tr>
<td>O(15)</td>
<td>0.1343(5)</td>
<td>0.4337(5)</td>
<td>0.3634(5)</td>
<td>0.0135(10)</td>
</tr>
<tr>
<td>O(16)</td>
<td>-0.0501(5)</td>
<td>0.4520(5)</td>
<td>0.2195(4)</td>
<td>0.0095(9)</td>
</tr>
<tr>
<td>O(17)</td>
<td>-0.1390(5)</td>
<td>0.6480(5)</td>
<td>0.3829(4)</td>
<td>0.0115(10)</td>
</tr>
</tbody>
</table>

Note. \(U(\text{eq}) \) is defined as one third of the trace of the orthogonalized \(U_{ij} \) tensor.
Table S2
Selected Bond Lengths (Å) and Results from Bond Valence Sum (BVS) calculations for Ni_{15}Te_{12}O_{34}Cl_{10}.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Bond</th>
<th>Bond distance</th>
<th>Bond valence</th>
<th>Atom</th>
<th>Bond</th>
<th>Bond distance</th>
<th>Bond valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Te(1)</td>
<td>Te(1)-O(1)</td>
<td>1.875(4)</td>
<td>1.4171</td>
<td>Te(4)</td>
<td>Te(4)-O(11)</td>
<td>1.889(4)</td>
<td>1.2685</td>
</tr>
<tr>
<td>Te(1)-O(3)</td>
<td>1.891(5)</td>
<td>1.2617</td>
<td>Te(4)-O(9)</td>
<td>1.950(4)</td>
<td>1.0757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(1)-O(2)</td>
<td>1.939(4)</td>
<td>1.1082</td>
<td>Te(4)-O(10)</td>
<td>1.959(4)</td>
<td>1.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(1)-Cl(3) #4</td>
<td>2.997(2)</td>
<td>0.1837</td>
<td>Te(4)-O(2) #3</td>
<td>2.497(4)</td>
<td>0.2453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(1)-Cl(2) #7</td>
<td>3.076(2)</td>
<td>0.1836</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(5)</td>
<td>Te(5)-O(13)</td>
<td>1.872(5)</td>
<td>1.3281</td>
<td>Te(6)</td>
<td>Te(6)-O(16)</td>
<td>1.862(5)</td>
<td>1.3645</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.83</td>
<td></td>
<td></td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(2)</td>
<td>Te(2)-O(5)</td>
<td>1.872(4)</td>
<td>1.3281</td>
<td>Te(5)-O(12)</td>
<td>1.875(4)</td>
<td>1.3174</td>
<td></td>
</tr>
<tr>
<td>Te(2)-O(4)</td>
<td>1.927(4)</td>
<td>1.1447</td>
<td>Te(5)-O(14)</td>
<td>1.881(4)</td>
<td>1.2962</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(2)-O(17) #1</td>
<td>2.057(5)</td>
<td>0.8056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(2)-O(1) #2</td>
<td>2.200(5)</td>
<td>0.5473</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.70</td>
<td></td>
<td></td>
<td>4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(1)</td>
<td>Ni(1)-O(3)</td>
<td>2.046(5)</td>
<td>0.3466</td>
<td>Ni(5)</td>
<td>Ni(5)-O(4) #8</td>
<td>2.007(5)</td>
<td>0.3852</td>
</tr>
<tr>
<td>Ni(1)-O(16) #1</td>
<td>2.053(5)</td>
<td>0.3401</td>
<td>Ni(5)-O(15)</td>
<td>2.085(5)</td>
<td>0.3120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(4)</td>
<td>2.074(4)</td>
<td>0.3214</td>
<td>Ni(5)-O(10) #6</td>
<td>2.199(4)</td>
<td>0.2292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(5)</td>
<td>2.080(4)</td>
<td>0.3162</td>
<td>Ni(5)-O(8) #6</td>
<td>2.200(4)</td>
<td>0.2286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(6)</td>
<td>2.100(4)</td>
<td>0.2996</td>
<td>Ni(5)-Cl(4)</td>
<td>2.418(2)</td>
<td>0.3411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(1)-O(6) #4</td>
<td>2.194(4)</td>
<td>0.2324</td>
<td>Ni(5)-Cl(2)</td>
<td>2.4408(17)</td>
<td>0.3207</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.86</td>
<td></td>
<td></td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(2)</td>
<td>Ni(2)-O(9)</td>
<td>2.027(4)</td>
<td>0.3649</td>
<td>Ni(6)</td>
<td>Ni(6)-O(11)</td>
<td>1.980(4)</td>
<td>0.4143</td>
</tr>
<tr>
<td>Ni(2)-O(16) #1</td>
<td>2.059(5)</td>
<td>0.3347</td>
<td>Ni(6)-O(14)</td>
<td>2.031(4)</td>
<td>0.3610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(2)-O(3) #4</td>
<td>2.128(5)</td>
<td>0.2777</td>
<td>Ni(6)-O(9)</td>
<td>2.145(4)</td>
<td>0.2653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(2)-O(6)</td>
<td>2.148(5)</td>
<td>0.2631</td>
<td>Ni(6)-O(8) #6</td>
<td>2.234(5)</td>
<td>0.2086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(2)-Cl(1)</td>
<td>2.349(2)</td>
<td>0.4110</td>
<td>Ni(6)-Cl(4)</td>
<td>2.3339(19)</td>
<td>0.4281</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(2)-Cl(3)</td>
<td>2.473(2)</td>
<td>0.2940</td>
<td>Ni(6)-Cl(3)</td>
<td>2.577(2)</td>
<td>0.0825</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.95</td>
<td></td>
<td></td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)</td>
<td>Ni(3)-O(12) #5</td>
<td>2.000(4)</td>
<td>0.3925</td>
<td>Ni(7)</td>
<td>Ni(7)-O(11)</td>
<td>1.981(4)</td>
<td>0.4132</td>
</tr>
<tr>
<td>Ni(3)-O(10) #6</td>
<td>2.015(4)</td>
<td>0.3769</td>
<td>Ni(7)-O(12)</td>
<td>2.013(4)</td>
<td>0.3790</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)-O(7)</td>
<td>2.135(5)</td>
<td>0.2725</td>
<td>Ni(7)-O(5) #3</td>
<td>2.024(5)</td>
<td>0.3679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)-O(2) #7</td>
<td>2.175(5)</td>
<td>0.2446</td>
<td>Ni(7)-O(2) #3</td>
<td>2.060(5)</td>
<td>0.3338</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)-Cl(1)</td>
<td>2.3469(19)</td>
<td>0.4133</td>
<td>Ni(7)-O(7) #3</td>
<td>2.106(4)</td>
<td>0.2948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)-Cl(2)</td>
<td>2.5210(18)</td>
<td>0.096</td>
<td>Ni(7)-O(7) #6</td>
<td>2.375(5)</td>
<td>0.1425</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.80</td>
<td></td>
<td></td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(4)</td>
<td>Ni(4)-O(10) #6</td>
<td>2.050(4)</td>
<td>0.3429</td>
<td>Ni(8)</td>
<td>Ni(8)-O(14)</td>
<td>2.000(5)</td>
<td>0.3925</td>
</tr>
<tr>
<td></td>
<td>Ni(4)-O(10)</td>
<td>2.050(4)</td>
<td>0.3429</td>
<td>Ni(8)-O(15)</td>
<td>2.002(5)</td>
<td>0.3904</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni(4)-O(9) #6</td>
<td>2.054(5)</td>
<td>0.3392</td>
<td>Ni(8)-O(13) #9</td>
<td>2.022(5)</td>
<td>0.3699</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni(4)-O(9)</td>
<td>2.054(5)</td>
<td>0.3392</td>
<td>Ni(8)-O(17) #10</td>
<td>2.058(4)</td>
<td>0.3356</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni(4)-O(8)</td>
<td>2.116(4)</td>
<td>0.2869</td>
<td>Ni(8)-Cl(4)</td>
<td>2.4041(19)</td>
<td>0.3541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni(4)-O(8) #6</td>
<td>2.116(4)</td>
<td>0.2869</td>
<td>Ni(8)-Cl(5)</td>
<td>2.5007(18)</td>
<td>0.1014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.94</td>
<td></td>
<td></td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O(10) Te(4)-O(10)</th>
<th>1.959(4)</th>
<th>1.050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ni(3)-O(10) #6</td>
<td>2.015(4)</td>
<td>0.3769</td>
</tr>
</tbody>
</table>

O(1)	Te(1)-O(1)	1.875(4)	1.4171
	Te(2)-O(1) #2	2.200(5)	0.5473
		1.96	

O(2)	Te(1)-O(2)	1.939(4)	1.1082
	Te(4)-O(2) #3	2.497(4)	0.2453
	Ni(3)-O(2) #7	2.175(5)	0.2446
	Ni(7)-O(2) #3	2.060(5)	0.3338
		1.93	

O(3)	Te(1)-O(3)	1.891(5)	1.2617
	Ni(1)-O(3)	2.046(5)	0.3466
	Ni(2)-O(3) #4	2.128(5)	0.2777
		1.89	

O(4)	Te(2)-O(4)	1.927(4)	1.1447
	Ni(1)-O(4)	2.074(4)	0.3214
	Ni(5)-O(4) #8	2.007(5)	0.3852
		1.85	

O(5)	Te(2)-O(5)	1.872(4)	1.3281
	Ni(1)-O(5)	2.080(4)	0.3162
	Ni(7)-O(5) #3	2.024(5)	0.3679
		2.01	

O(6)	Te(3)-O(6)	1.911(5)	1.1953
	Ni(1)-O(6)	2.100(4)	0.2996
	Ni(1)-O(6) #4	2.194(4)	0.2324
	Ni(2)-O(6)	2.148(5)	0.2631
		1.99	

O(7)	Te(3)-O(7)	1.901(4)	1.2280
	Ni(3)-O(7)	2.135(5)	0.2725
	Ni(7)-O(7) #3	2.106(4)	0.2948
	Ni(7)-O(7) #6	2.375(5)	0.1425
		1.94	

| O(10) | Te(4)-O(10) | 1.959(4) | 1.050 |
| | Ni(3)-O(10) #6 | 2.015(4) | 0.3769 |

O(11)	Te(4)-O(11)	1.889(4)	1.2685
	Ni(6)-O(11)	1.980(4)	0.4143
	Ni(7)-O(11)	1.981(4)	0.4132
		2.09	

O(12)	Te(5)-O(12)	1.875(4)	1.3174
	Ni(3)-O(12) #5	2.000(4)	0.3925
	Ni(7)-O(12)	2.013(4)	0.3790
		2.09	

O(13)	Te(5)-O(13)	1.872(5)	1.3281
	Ni(8)-O(13) #9	2.022(5)	0.3699
		1.70	

O(14)	Te(5)-O(14)	1.881(4)	1.2962
	Ni(6)-O(14)	2.031(4)	0.3610
	Ni(8)-O(14)	2.000(5)	0.3925
		2.05	

O(15)	Te(6)-O(15)	1.889(5)	1.2685
	Ni(5)-O(15)	2.085(5)	0.3120
	Ni(8)-O(15)	2.002(5)	0.3904
		1.97	

<p>| O(16) | Te(6)-O(16) | 1.862(5) | 1.3645 |
| | Ni(1)-O(16) #1 | 2.053(5) | 0.3401 |
| | Ni(2)-O(16) #1 | 2.059(5) | 0.3347 |
| | | 2.04 | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Te-X-X</th>
<th>r0</th>
<th>r</th>
<th>(\Sigma_{\text{BVS}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(8) Te(3)-O(8)</td>
<td>1.887(4)</td>
<td>1.2754</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Ni(4)-O(8)</td>
<td>2.116(4)</td>
<td>0.2869</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>Ni(5)-O(8) #6</td>
<td>2.200(4)</td>
<td>0.2286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(6)-O(8) #6</td>
<td>2.234(5)</td>
<td>0.2086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(17) Te(2)-O(17) #1</td>
<td>2.057(5)</td>
<td>0.8056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te(6)-O(17)</td>
<td>1.897(4)</td>
<td>1.2414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(8)-O(17) #10</td>
<td>2.058(4)</td>
<td>0.3356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(9) Te(4)-O(9)</td>
<td>1.950(4)</td>
<td>1.0757</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>Ni(2)-O(9)</td>
<td>2.027(4)</td>
<td>0.3649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(4)-O(9)</td>
<td>2.054(5)</td>
<td>0.3392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(6)-O(9)</td>
<td>2.145(4)</td>
<td>0.2653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(4) Ni(5)-Cl(4)</td>
<td>2.418(2)</td>
<td>0.3411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(1) Ni(2)-Cl(1)</td>
<td>2.349(2)</td>
<td>0.4110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(3)-Cl(1)</td>
<td>2.3469(19)</td>
<td>0.4133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(5) Ni(5)-Cl(5)</td>
<td>2.841(2)</td>
<td>0.2800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(6)-Cl(5)</td>
<td>2.4041(19)</td>
<td>0.3541</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>Cl(2) Te(1)-Cl(2) #7</td>
<td>3.076(2)</td>
<td>0.1836</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Ni(3)-Cl(2)</td>
<td>2.5210(18)</td>
<td>0.096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(5)-Cl(2)</td>
<td>2.4408(17)</td>
<td>0.3207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl(3) Te(1)-Cl(3) #4</td>
<td>2.997(2)</td>
<td>0.1837</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Ni(2)-Cl(3)</td>
<td>2.473(2)</td>
<td>0.2940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(6)-Cl(3)</td>
<td>2.577(2)</td>
<td>0.0825</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Symmetry transformations used to generate equivalent atoms:

#1 1+x, y, z
#2 2-x, 2-y, -z
#3 x, y-1, z
#4 -x+2, 1-y, -z
#5 x, y+1, z
#6 -x+1, 1-y, -z
#7 1-x, 2-y, -z
#8 x-1, y, z
#9 1-x, -y, 1-z
#10 -x, 1-y, 1-z

Bond valence sum (BVS) calculations according to Brown and Altermatt [A].

The \(r_0 \) values used are Te-O: 1.977, Te-Cl: 2.37, Ni-O: 1.654, Ni-Cl: 2.02 [B]
Table S3 Selected Bond Angles (º) for Ni$_{15}$Te$_{12}$O$_{34}$Cl$_{10}$.

<table>
<thead>
<tr>
<th>Bond Angle</th>
<th>Value (º)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-Te(1)-O(3)</td>
<td>93.3(2)</td>
</tr>
<tr>
<td>O(1)-Te(1)-O(2)</td>
<td>92.1(2)</td>
</tr>
<tr>
<td>O(3)-Te(1)-O(2)</td>
<td>101.12</td>
</tr>
<tr>
<td>O(1)-Te(1)-Cl(3)</td>
<td>82.36(16)</td>
</tr>
<tr>
<td>O(3)-Te(1)-Cl(3)</td>
<td>78.31(16)</td>
</tr>
<tr>
<td>O(2)-Te(1)-Cl(3)</td>
<td>174.28(16)</td>
</tr>
<tr>
<td>O(1)-Te(1)-Cl(2)</td>
<td>86.08(17)</td>
</tr>
<tr>
<td>O(3)-Te(1)-Cl(2)</td>
<td>176.13(16)</td>
</tr>
<tr>
<td>O(2)-Te(1)-Cl(2)</td>
<td>75.21(16)</td>
</tr>
<tr>
<td>O(5)-Te(2)-O(4)</td>
<td>84.9(2)</td>
</tr>
<tr>
<td>O(5)-Te(2)-O(17)</td>
<td>104.1(2)</td>
</tr>
<tr>
<td>O(4)-Te(2)-O(17)</td>
<td>93.4(2)</td>
</tr>
<tr>
<td>O(7)-Te(3)-O(6)</td>
<td>92.0(2)</td>
</tr>
<tr>
<td>O(16)-Te(6)-O(15)</td>
<td>95.9(2)</td>
</tr>
<tr>
<td>O(16)-Te(6)-O(17)</td>
<td>98.2(2)</td>
</tr>
<tr>
<td>O(15)-Te(6)-O(17)</td>
<td>90.8(2)</td>
</tr>
<tr>
<td>O(16)-Te(6)-Cl(5)</td>
<td>101.3(2)</td>
</tr>
<tr>
<td>O(15)-Te(6)-Cl(5)</td>
<td>76.5(2)</td>
</tr>
<tr>
<td>O(17)-Te(6)-Cl(5)</td>
<td>157.0(2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(16)</td>
<td>167.7(2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(4)</td>
<td>96.1(2)</td>
</tr>
<tr>
<td>O(16)-Ni(1)-O(4)</td>
<td>90.0(2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(5)</td>
<td>89.3(2)</td>
</tr>
<tr>
<td>O(16)-Ni(1)-O(5)</td>
<td>102.6(2)</td>
</tr>
<tr>
<td>O(4)-Ni(1)-O(5)</td>
<td>76.2(2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(6)</td>
<td>91.8(2)</td>
</tr>
<tr>
<td>O(16)-Ni(1)-O(6)</td>
<td>83.2(2)</td>
</tr>
<tr>
<td>O(4)-Ni(1)-O(6)</td>
<td>171.0(2)</td>
</tr>
<tr>
<td>O(5)-Ni(1)-O(6)</td>
<td>99.7(2)</td>
</tr>
<tr>
<td>O(3)-Ni(1)-O(6)</td>
<td>90.0(2)</td>
</tr>
<tr>
<td>O(16)-Ni(1)-O(6)</td>
<td>83.2(2)</td>
</tr>
<tr>
<td>O(4)-Ni(1)-O(6)</td>
<td>100.4(2)</td>
</tr>
<tr>
<td>O(5)-Ni(1)-O(6)</td>
<td>171.4(2)</td>
</tr>
<tr>
<td>O(6)-Ni(1)-O(6)</td>
<td>84.8(2)</td>
</tr>
</tbody>
</table>
Note. Symmetry transformations used to generate equivalent atoms:

<table>
<thead>
<tr>
<th>#1</th>
<th>1+x, y, z</th>
<th>#2</th>
<th>2-x, 2-y, -z</th>
<th>#3</th>
<th>x, y-1, z</th>
<th>#4</th>
<th>-x+2, 1-y, -z</th>
</tr>
</thead>
<tbody>
<tr>
<td>#5</td>
<td>x, y+1, z</td>
<td>#6</td>
<td>-x+1, 1-y, -z</td>
<td>#7</td>
<td>1-x, 2-y, -z</td>
<td>#8</td>
<td>x-1, y, z</td>
</tr>
<tr>
<td>#9</td>
<td>1-x, -y, 1-z</td>
<td>#10</td>
<td>-x, 1-y, 1-z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References
